从种群时间序列数据揭示生态系统的未知动态机制

bioRxiv Pub Date : 2024-08-09 DOI:10.1101/2024.08.07.607005
Lucas P. Medeiros, Darian K. Sorenson, Bethany J. Johnson, E. Palkovacs, Stephan B. Munch
{"title":"从种群时间序列数据揭示生态系统的未知动态机制","authors":"Lucas P. Medeiros, Darian K. Sorenson, Bethany J. Johnson, E. Palkovacs, Stephan B. Munch","doi":"10.1101/2024.08.07.607005","DOIUrl":null,"url":null,"abstract":"Many ecosystems can exist in alternative dynamical regimes for which small changes in an environmental driver can cause sudden jumps between regimes. However, predicting the dynamics of regimes that occur under unobserved levels of the environmental driver has remained an unsolved challenge in ecology with important implications for conservation and management. Here we show that integrating population time-series data and information on the putative driver into an empirical dynamic model allows us to predict new dynamical regimes without the need to specify a population dynamics model. As a proof of concept, we demonstrate that we can accurately predict fixed-point, cyclic, or chaotic dynamics under unseen driver levels for a range of simulated models. For a model with an abrupt population collapse, we show that our approach can anticipate the regime that follows the tipping point. We then apply our approach to data from an experimental microbial ecosystem and from a lake planktonic ecosystem. We find that we can reconstruct transitions away from chaos in the experimental ecosystem and anticipate the dynamics of the oligotrophic regime in the lake ecosystem. These results lay the groundwork for making rational decisions about preventing, or preparing for, regime shifts in natural ecosystems.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing unseen dynamical regimes of ecosystems from population time-series data\",\"authors\":\"Lucas P. Medeiros, Darian K. Sorenson, Bethany J. Johnson, E. Palkovacs, Stephan B. Munch\",\"doi\":\"10.1101/2024.08.07.607005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many ecosystems can exist in alternative dynamical regimes for which small changes in an environmental driver can cause sudden jumps between regimes. However, predicting the dynamics of regimes that occur under unobserved levels of the environmental driver has remained an unsolved challenge in ecology with important implications for conservation and management. Here we show that integrating population time-series data and information on the putative driver into an empirical dynamic model allows us to predict new dynamical regimes without the need to specify a population dynamics model. As a proof of concept, we demonstrate that we can accurately predict fixed-point, cyclic, or chaotic dynamics under unseen driver levels for a range of simulated models. For a model with an abrupt population collapse, we show that our approach can anticipate the regime that follows the tipping point. We then apply our approach to data from an experimental microbial ecosystem and from a lake planktonic ecosystem. We find that we can reconstruct transitions away from chaos in the experimental ecosystem and anticipate the dynamics of the oligotrophic regime in the lake ecosystem. These results lay the groundwork for making rational decisions about preventing, or preparing for, regime shifts in natural ecosystems.\",\"PeriodicalId\":505198,\"journal\":{\"name\":\"bioRxiv\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.07.607005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.07.607005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多生态系统可存在于不同的动态机制中,环境驱动因素的微小变化可导致机制之间的突然跃迁。然而,预测环境驱动因素在未观察到的情况下发生的动态变化,一直是生态学中尚未解决的难题,对保护和管理具有重要影响。在这里,我们展示了将种群时间序列数据和推定驱动因素的信息整合到经验动态模型中,无需指定种群动态模型就能预测新的动态机制。作为概念验证,我们证明了在一系列模拟模型中,我们可以准确预测未知驱动力水平下的定点、循环或混沌动态。对于种群突然崩溃的模型,我们证明我们的方法可以预测临界点之后的状态。然后,我们将我们的方法应用于实验微生物生态系统和湖泊浮游生物生态系统的数据。我们发现,我们可以重建实验生态系统中摆脱混沌的过渡,并预测湖泊生态系统中寡营养状态的动态。这些结果为在自然生态系统中防止或准备应对制度转变做出合理决策奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revealing unseen dynamical regimes of ecosystems from population time-series data
Many ecosystems can exist in alternative dynamical regimes for which small changes in an environmental driver can cause sudden jumps between regimes. However, predicting the dynamics of regimes that occur under unobserved levels of the environmental driver has remained an unsolved challenge in ecology with important implications for conservation and management. Here we show that integrating population time-series data and information on the putative driver into an empirical dynamic model allows us to predict new dynamical regimes without the need to specify a population dynamics model. As a proof of concept, we demonstrate that we can accurately predict fixed-point, cyclic, or chaotic dynamics under unseen driver levels for a range of simulated models. For a model with an abrupt population collapse, we show that our approach can anticipate the regime that follows the tipping point. We then apply our approach to data from an experimental microbial ecosystem and from a lake planktonic ecosystem. We find that we can reconstruct transitions away from chaos in the experimental ecosystem and anticipate the dynamics of the oligotrophic regime in the lake ecosystem. These results lay the groundwork for making rational decisions about preventing, or preparing for, regime shifts in natural ecosystems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信