{"title":"关于利用多变量航空时间序列数据进行异常检测的时态融合变换器探索","authors":"Bulent Ayhan, Erik P. Vargo, Huang Tang","doi":"10.3390/aerospace11080646","DOIUrl":null,"url":null,"abstract":"In this work, we explored the feasibility of using a transformer-based time-series forecasting architecture, known as the Temporal Fusion Transformer (TFT), for anomaly detection using threaded track data from the MITRE Corporation’s Transportation Data Platform (TDP) and digital flight data. The TFT architecture has the flexibility to include both time-varying multivariate data and categorical data from multimodal data sources and conduct single-output or multi-output predictions. For anomaly detection, rather than training a TFT model to predict the outcomes of specific aviation safety events, we train a TFT model to learn nominal behavior. Any significant deviation of the TFT model’s future horizon forecast for the output flight parameters of interest from the observed time-series data is considered an anomaly when conducting evaluations. For proof-of-concept demonstrations, we used an unstable approach (UA) as the anomaly event. This type of anomaly detection approach with nominal behavior learning can be used to develop flight analytics to identify emerging safety hazards in historical flight data and has the potential to be used as an on-board early warning system to assist pilots during flight.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Exploration of Temporal Fusion Transformers for Anomaly Detection with Multivariate Aviation Time-Series Data\",\"authors\":\"Bulent Ayhan, Erik P. Vargo, Huang Tang\",\"doi\":\"10.3390/aerospace11080646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we explored the feasibility of using a transformer-based time-series forecasting architecture, known as the Temporal Fusion Transformer (TFT), for anomaly detection using threaded track data from the MITRE Corporation’s Transportation Data Platform (TDP) and digital flight data. The TFT architecture has the flexibility to include both time-varying multivariate data and categorical data from multimodal data sources and conduct single-output or multi-output predictions. For anomaly detection, rather than training a TFT model to predict the outcomes of specific aviation safety events, we train a TFT model to learn nominal behavior. Any significant deviation of the TFT model’s future horizon forecast for the output flight parameters of interest from the observed time-series data is considered an anomaly when conducting evaluations. For proof-of-concept demonstrations, we used an unstable approach (UA) as the anomaly event. This type of anomaly detection approach with nominal behavior learning can be used to develop flight analytics to identify emerging safety hazards in historical flight data and has the potential to be used as an on-board early warning system to assist pilots during flight.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11080646\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11080646","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
On the Exploration of Temporal Fusion Transformers for Anomaly Detection with Multivariate Aviation Time-Series Data
In this work, we explored the feasibility of using a transformer-based time-series forecasting architecture, known as the Temporal Fusion Transformer (TFT), for anomaly detection using threaded track data from the MITRE Corporation’s Transportation Data Platform (TDP) and digital flight data. The TFT architecture has the flexibility to include both time-varying multivariate data and categorical data from multimodal data sources and conduct single-output or multi-output predictions. For anomaly detection, rather than training a TFT model to predict the outcomes of specific aviation safety events, we train a TFT model to learn nominal behavior. Any significant deviation of the TFT model’s future horizon forecast for the output flight parameters of interest from the observed time-series data is considered an anomaly when conducting evaluations. For proof-of-concept demonstrations, we used an unstable approach (UA) as the anomaly event. This type of anomaly detection approach with nominal behavior learning can be used to develop flight analytics to identify emerging safety hazards in historical flight data and has the potential to be used as an on-board early warning system to assist pilots during flight.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.