准静态轴向挤压下双向波纹管的防撞性能与多目标优化

Materials Pub Date : 2024-08-09 DOI:10.3390/ma17163958
Liuxiao Zou, Xin Wang, Ruojun Wang, Xin Huang, Menglei Li, Shuai Li, Zengyan Jiang, Weilong Yin
{"title":"准静态轴向挤压下双向波纹管的防撞性能与多目标优化","authors":"Liuxiao Zou, Xin Wang, Ruojun Wang, Xin Huang, Menglei Li, Shuai Li, Zengyan Jiang, Weilong Yin","doi":"10.3390/ma17163958","DOIUrl":null,"url":null,"abstract":"Longitudinal corrugated tubes (LCTs) exhibit stable platform force under axial compression but have low specific energy absorption. Conversely, circumferential corrugated tubes (CCTs) offer higher specific energy absorption but with unstable platform force. To overcome these limitations, this paper introduces a novel bi-directional corrugated tube (BCT) that amalgamates the strengths of both the CCT and LCT while mitigating their weaknesses. The BCT is formed by rolling a bi-directional corrugated structure into a circular tubular form. Numerical simulations of the BCT closely align with experimental results. The study further examines the influence of discrete parameters on the BCT’s performance through simulations and identifies the tube’s optimal design using the integral entropy TOPSIS method. A full factorial experimental approach is then employed to investigate the impact of radial amplitude, axial amplitude, and neutral surface diameter on the crushing behavior of the BCT, comparing it with the CCT and LCT. The results reveal that increasing Ai enhances the axial resistance of the structure, while increasing Aj reduces the buckling effect, resulting in a higher specific energy absorption and lower ultimate load capacity for the BCT compared to the CCT and LCT. A simultaneous multi-objective optimization of the CCT, LCT, and BCT confirms that the BCT offers superior specific energy absorption and ultimate load capacity. The optimal configuration parameters for the BCT have been determined, providing significant insights for practical applications in crashworthiness engineering.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"52 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crashworthiness Performance and Multi-Objective Optimization of Bi-Directional Corrugated Tubes under Quasi-Static Axial Crushing\",\"authors\":\"Liuxiao Zou, Xin Wang, Ruojun Wang, Xin Huang, Menglei Li, Shuai Li, Zengyan Jiang, Weilong Yin\",\"doi\":\"10.3390/ma17163958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Longitudinal corrugated tubes (LCTs) exhibit stable platform force under axial compression but have low specific energy absorption. Conversely, circumferential corrugated tubes (CCTs) offer higher specific energy absorption but with unstable platform force. To overcome these limitations, this paper introduces a novel bi-directional corrugated tube (BCT) that amalgamates the strengths of both the CCT and LCT while mitigating their weaknesses. The BCT is formed by rolling a bi-directional corrugated structure into a circular tubular form. Numerical simulations of the BCT closely align with experimental results. The study further examines the influence of discrete parameters on the BCT’s performance through simulations and identifies the tube’s optimal design using the integral entropy TOPSIS method. A full factorial experimental approach is then employed to investigate the impact of radial amplitude, axial amplitude, and neutral surface diameter on the crushing behavior of the BCT, comparing it with the CCT and LCT. The results reveal that increasing Ai enhances the axial resistance of the structure, while increasing Aj reduces the buckling effect, resulting in a higher specific energy absorption and lower ultimate load capacity for the BCT compared to the CCT and LCT. A simultaneous multi-objective optimization of the CCT, LCT, and BCT confirms that the BCT offers superior specific energy absorption and ultimate load capacity. The optimal configuration parameters for the BCT have been determined, providing significant insights for practical applications in crashworthiness engineering.\",\"PeriodicalId\":503043,\"journal\":{\"name\":\"Materials\",\"volume\":\"52 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ma17163958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ma17163958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纵向波纹管(LCT)在轴向压缩下表现出稳定的平台力,但比能量吸收较低。相反,圆周波纹管(CCT)具有较高的比能量吸收能力,但平台力不稳定。为了克服这些局限性,本文介绍了一种新型双向波纹管(BCT),它融合了 CCT 和 LCT 的优点,同时又减轻了它们的缺点。BCT 是通过将双向波纹结构轧制成圆形管状而形成的。BCT 的数值模拟与实验结果非常吻合。研究通过模拟进一步检验了离散参数对 BCT 性能的影响,并使用积分熵 TOPSIS 方法确定了管材的最佳设计。然后采用全因子实验方法研究了径向振幅、轴向振幅和中性面直径对 BCT 挤压行为的影响,并将其与 CCT 和 LCT 进行了比较。结果表明,增加 Ai 会增强结构的轴向阻力,而增加 Aj 则会降低屈曲效应,从而导致 BCT 与 CCT 和 LCT 相比具有更高的比能量吸收能力和更低的极限承载能力。对 CCT、LCT 和 BCT 同时进行的多目标优化证实,BCT 具有更优越的比能量吸收能力和极限承载能力。BCT 的最佳配置参数已经确定,为防撞工程的实际应用提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crashworthiness Performance and Multi-Objective Optimization of Bi-Directional Corrugated Tubes under Quasi-Static Axial Crushing
Longitudinal corrugated tubes (LCTs) exhibit stable platform force under axial compression but have low specific energy absorption. Conversely, circumferential corrugated tubes (CCTs) offer higher specific energy absorption but with unstable platform force. To overcome these limitations, this paper introduces a novel bi-directional corrugated tube (BCT) that amalgamates the strengths of both the CCT and LCT while mitigating their weaknesses. The BCT is formed by rolling a bi-directional corrugated structure into a circular tubular form. Numerical simulations of the BCT closely align with experimental results. The study further examines the influence of discrete parameters on the BCT’s performance through simulations and identifies the tube’s optimal design using the integral entropy TOPSIS method. A full factorial experimental approach is then employed to investigate the impact of radial amplitude, axial amplitude, and neutral surface diameter on the crushing behavior of the BCT, comparing it with the CCT and LCT. The results reveal that increasing Ai enhances the axial resistance of the structure, while increasing Aj reduces the buckling effect, resulting in a higher specific energy absorption and lower ultimate load capacity for the BCT compared to the CCT and LCT. A simultaneous multi-objective optimization of the CCT, LCT, and BCT confirms that the BCT offers superior specific energy absorption and ultimate load capacity. The optimal configuration parameters for the BCT have been determined, providing significant insights for practical applications in crashworthiness engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信