海运业能效数据分析的障碍

Veronica Jaramillo Jimenez, Z. H. Munim, Hyungju Kim, Prasad Perera
{"title":"海运业能效数据分析的障碍","authors":"Veronica Jaramillo Jimenez, Z. H. Munim, Hyungju Kim, Prasad Perera","doi":"10.1115/1.4066199","DOIUrl":null,"url":null,"abstract":"\n The maritime industry is urged to reduce greenhouse gas emissions and improve the energy efficiency of ships. A potential and relatively inexpensive solution is to implement data analytics as an aid to identify areas of improvement to optimize ship performance and fuel consumption. This study investigates barriers to data analytics for maritime organizations intending to utilize data as a means of operational enhancement. This study used the DELPHI – Best Worst Method (BWM) hybrid approach to identify and rank the barriers to data analytics for energy efficiency. The results revealed a total 20 sub-barriers grouped into five main barriers. These barriers fall into two overarching categories: Organizational barriers, including Cultural, Managerial, and Economic, and Technological barriers, comprising Data Management and Data Analysis. This study also highlights the most critical barriers within each category, revealing inadequate data governance, multiple suppliers needed to implement a comprehensive system and contracts and restrictive clauses as the dominant barriers that hamper the adoption of big data analytics in the maritime domain.","PeriodicalId":509714,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering","volume":"93 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Barriers to data analytics for energy efficiency in the maritime industry\",\"authors\":\"Veronica Jaramillo Jimenez, Z. H. Munim, Hyungju Kim, Prasad Perera\",\"doi\":\"10.1115/1.4066199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The maritime industry is urged to reduce greenhouse gas emissions and improve the energy efficiency of ships. A potential and relatively inexpensive solution is to implement data analytics as an aid to identify areas of improvement to optimize ship performance and fuel consumption. This study investigates barriers to data analytics for maritime organizations intending to utilize data as a means of operational enhancement. This study used the DELPHI – Best Worst Method (BWM) hybrid approach to identify and rank the barriers to data analytics for energy efficiency. The results revealed a total 20 sub-barriers grouped into five main barriers. These barriers fall into two overarching categories: Organizational barriers, including Cultural, Managerial, and Economic, and Technological barriers, comprising Data Management and Data Analysis. This study also highlights the most critical barriers within each category, revealing inadequate data governance, multiple suppliers needed to implement a comprehensive system and contracts and restrictive clauses as the dominant barriers that hamper the adoption of big data analytics in the maritime domain.\",\"PeriodicalId\":509714,\"journal\":{\"name\":\"Journal of Offshore Mechanics and Arctic Engineering\",\"volume\":\"93 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Offshore Mechanics and Arctic Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4066199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4066199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

海运业被敦促减少温室气体排放,提高船舶能效。一个潜在且成本相对较低的解决方案是采用数据分析作为辅助手段,以确定需要改进的领域,从而优化船舶性能和燃料消耗。本研究调查了有意利用数据作为运营改进手段的海事组织在数据分析方面遇到的障碍。本研究采用 DELPHI - 最佳最差法 (BWM) 混合方法,对数据分析提高能效的障碍进行识别和排序。研究结果显示,共有 20 个子障碍,分为五个主要障碍。这些障碍分为两大类:组织障碍(包括文化、管理和经济)和技术障碍(包括数据管理和数据分析)。本研究还强调了每个类别中最关键的障碍,揭示了数据治理不足、实施综合系统所需的多个供应商以及合同和限制性条款是阻碍海事领域采用大数据分析的主要障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Barriers to data analytics for energy efficiency in the maritime industry
The maritime industry is urged to reduce greenhouse gas emissions and improve the energy efficiency of ships. A potential and relatively inexpensive solution is to implement data analytics as an aid to identify areas of improvement to optimize ship performance and fuel consumption. This study investigates barriers to data analytics for maritime organizations intending to utilize data as a means of operational enhancement. This study used the DELPHI – Best Worst Method (BWM) hybrid approach to identify and rank the barriers to data analytics for energy efficiency. The results revealed a total 20 sub-barriers grouped into five main barriers. These barriers fall into two overarching categories: Organizational barriers, including Cultural, Managerial, and Economic, and Technological barriers, comprising Data Management and Data Analysis. This study also highlights the most critical barriers within each category, revealing inadequate data governance, multiple suppliers needed to implement a comprehensive system and contracts and restrictive clauses as the dominant barriers that hamper the adoption of big data analytics in the maritime domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信