{"title":"三变量的 Mittag-Leffler 型函数","authors":"Anvar Hasanov, Hilola Yuldashova","doi":"10.1002/mma.10401","DOIUrl":null,"url":null,"abstract":"<p>In this article, we generalized Mittag-Leffler-type functions \n<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mrow>\n <mover>\n <mrow>\n <mi>F</mi>\n </mrow>\n <mo>¯</mo>\n </mover>\n </mrow>\n <mrow>\n <mi>A</mi>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </msubsup>\n <mo>,</mo>\n <mspace></mspace>\n <msubsup>\n <mrow>\n <mover>\n <mrow>\n <mi>F</mi>\n </mrow>\n <mo>¯</mo>\n </mover>\n </mrow>\n <mrow>\n <mi>B</mi>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </msubsup>\n <mo>,</mo>\n <mspace></mspace>\n <msubsup>\n <mrow>\n <mover>\n <mrow>\n <mi>F</mi>\n </mrow>\n <mo>¯</mo>\n </mover>\n </mrow>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ {\\overline{F}}_A&amp;amp;#x0005E;{(3)},{\\overline{F}}_B&amp;amp;#x0005E;{(3)},{\\overline{F}}_C&amp;amp;#x0005E;{(3)} $$</annotation>\n </semantics></math>, and \n<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mrow>\n <mover>\n <mrow>\n <mi>F</mi>\n </mrow>\n <mo>¯</mo>\n </mover>\n </mrow>\n <mrow>\n <mi>D</mi>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ {\\overline{F}}_D&amp;amp;#x0005E;{(3)} $$</annotation>\n </semantics></math>, which correspond, respectively, to the familiar Lauricella hypergeometric functions \n<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mrow>\n <mi>F</mi>\n </mrow>\n <mrow>\n <mi>A</mi>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </msubsup>\n <mo>,</mo>\n <mspace></mspace>\n <msubsup>\n <mrow>\n <mi>F</mi>\n </mrow>\n <mrow>\n <mi>B</mi>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </msubsup>\n <mo>,</mo>\n <mspace></mspace>\n <msubsup>\n <mrow>\n <mi>F</mi>\n </mrow>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ {F}_A&amp;amp;#x0005E;{(3)},{F}_B&amp;amp;#x0005E;{(3)},{F}_C&amp;amp;#x0005E;{(3)} $$</annotation>\n </semantics></math>, and \n<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mrow>\n <mi>F</mi>\n </mrow>\n <mrow>\n <mi>D</mi>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ {F}_D&amp;amp;#x0005E;{(3)} $$</annotation>\n </semantics></math> of three variables. Initially, from the Mittag-Leffler type function in the simplest form to the functions we are studying, necessary information about the development history, study, and importance of this and hypergeometric type functions will be introduced. Among the various properties and characteristics of these three-variable Mittag-Leffler-type function \n<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mrow>\n <mover>\n <mrow>\n <mi>F</mi>\n </mrow>\n <mo>¯</mo>\n </mover>\n </mrow>\n <mrow>\n <mi>D</mi>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ {\\overline{F}}_D&amp;amp;#x0005E;{(3)} $$</annotation>\n </semantics></math>, which we investigate in the article, include their relationships with other extensions and generalizations of the classical Mittag-Leffler functions, their three-dimensional convergence regions, their Euler-type integral representations, their Laplace transforms, and their connections with the Riemann-Liouville operators of fractional calculus. The link of three-variable Mittag-Leffler function with fractional differential equation systems involving different fractional orders is necessary on certain applications in physics.Therefore, we provide the systems of partial differential equations which are associated with them.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 2","pages":"1659-1675"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mittag-Leffler type functions of three variables\",\"authors\":\"Anvar Hasanov, Hilola Yuldashova\",\"doi\":\"10.1002/mma.10401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we generalized Mittag-Leffler-type functions \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <mo>¯</mo>\\n </mover>\\n </mrow>\\n <mrow>\\n <mi>A</mi>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n </msubsup>\\n <mo>,</mo>\\n <mspace></mspace>\\n <msubsup>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <mo>¯</mo>\\n </mover>\\n </mrow>\\n <mrow>\\n <mi>B</mi>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n </msubsup>\\n <mo>,</mo>\\n <mspace></mspace>\\n <msubsup>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <mo>¯</mo>\\n </mover>\\n </mrow>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n </msubsup>\\n </mrow>\\n <annotation>$$ {\\\\overline{F}}_A&amp;amp;#x0005E;{(3)},{\\\\overline{F}}_B&amp;amp;#x0005E;{(3)},{\\\\overline{F}}_C&amp;amp;#x0005E;{(3)} $$</annotation>\\n </semantics></math>, and \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <mo>¯</mo>\\n </mover>\\n </mrow>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n </msubsup>\\n </mrow>\\n <annotation>$$ {\\\\overline{F}}_D&amp;amp;#x0005E;{(3)} $$</annotation>\\n </semantics></math>, which correspond, respectively, to the familiar Lauricella hypergeometric functions \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <mrow>\\n <mi>A</mi>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n </msubsup>\\n <mo>,</mo>\\n <mspace></mspace>\\n <msubsup>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <mrow>\\n <mi>B</mi>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n </msubsup>\\n <mo>,</mo>\\n <mspace></mspace>\\n <msubsup>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n </msubsup>\\n </mrow>\\n <annotation>$$ {F}_A&amp;amp;#x0005E;{(3)},{F}_B&amp;amp;#x0005E;{(3)},{F}_C&amp;amp;#x0005E;{(3)} $$</annotation>\\n </semantics></math>, and \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n </msubsup>\\n </mrow>\\n <annotation>$$ {F}_D&amp;amp;#x0005E;{(3)} $$</annotation>\\n </semantics></math> of three variables. Initially, from the Mittag-Leffler type function in the simplest form to the functions we are studying, necessary information about the development history, study, and importance of this and hypergeometric type functions will be introduced. Among the various properties and characteristics of these three-variable Mittag-Leffler-type function \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <mo>¯</mo>\\n </mover>\\n </mrow>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n </msubsup>\\n </mrow>\\n <annotation>$$ {\\\\overline{F}}_D&amp;amp;#x0005E;{(3)} $$</annotation>\\n </semantics></math>, which we investigate in the article, include their relationships with other extensions and generalizations of the classical Mittag-Leffler functions, their three-dimensional convergence regions, their Euler-type integral representations, their Laplace transforms, and their connections with the Riemann-Liouville operators of fractional calculus. The link of three-variable Mittag-Leffler function with fractional differential equation systems involving different fractional orders is necessary on certain applications in physics.Therefore, we provide the systems of partial differential equations which are associated with them.</p>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 2\",\"pages\":\"1659-1675\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10401\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10401","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
In this article, we generalized Mittag-Leffler-type functions
, and
, which correspond, respectively, to the familiar Lauricella hypergeometric functions
, and
of three variables. Initially, from the Mittag-Leffler type function in the simplest form to the functions we are studying, necessary information about the development history, study, and importance of this and hypergeometric type functions will be introduced. Among the various properties and characteristics of these three-variable Mittag-Leffler-type function
, which we investigate in the article, include their relationships with other extensions and generalizations of the classical Mittag-Leffler functions, their three-dimensional convergence regions, their Euler-type integral representations, their Laplace transforms, and their connections with the Riemann-Liouville operators of fractional calculus. The link of three-variable Mittag-Leffler function with fractional differential equation systems involving different fractional orders is necessary on certain applications in physics.Therefore, we provide the systems of partial differential equations which are associated with them.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.