Zihao Chen, Zijie Zhu, Bangzhen Li, Kehua Leng, Min Yu, Zhixin Huang, Ying Li
{"title":"双相晶格结构的弯曲塌缩和能量吸收","authors":"Zihao Chen, Zijie Zhu, Bangzhen Li, Kehua Leng, Min Yu, Zhixin Huang, Ying Li","doi":"10.3390/ma17163952","DOIUrl":null,"url":null,"abstract":"A dual-phase lattice structure composed of mixed units with hard and soft phase characteristics is proposed in this work. The proposed lattice structure has high specific energy absorption and high compressive strength. The load response and energy absorption characteristics under bending loads were studied through three-point bending tests and numerical analysis methods. The research results indicate that although the deformation modes of the given lattice structure are the same, the dual-phase design strategy significantly improves the bending performance of the lattice structure: the bending modulus is increased by 744.7%, and the specific energy absorption is increased by 243.5%.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bending Collapse and Energy Absorption of Dual-Phase Lattice Structures\",\"authors\":\"Zihao Chen, Zijie Zhu, Bangzhen Li, Kehua Leng, Min Yu, Zhixin Huang, Ying Li\",\"doi\":\"10.3390/ma17163952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dual-phase lattice structure composed of mixed units with hard and soft phase characteristics is proposed in this work. The proposed lattice structure has high specific energy absorption and high compressive strength. The load response and energy absorption characteristics under bending loads were studied through three-point bending tests and numerical analysis methods. The research results indicate that although the deformation modes of the given lattice structure are the same, the dual-phase design strategy significantly improves the bending performance of the lattice structure: the bending modulus is increased by 744.7%, and the specific energy absorption is increased by 243.5%.\",\"PeriodicalId\":503043,\"journal\":{\"name\":\"Materials\",\"volume\":\"3 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ma17163952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ma17163952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bending Collapse and Energy Absorption of Dual-Phase Lattice Structures
A dual-phase lattice structure composed of mixed units with hard and soft phase characteristics is proposed in this work. The proposed lattice structure has high specific energy absorption and high compressive strength. The load response and energy absorption characteristics under bending loads were studied through three-point bending tests and numerical analysis methods. The research results indicate that although the deformation modes of the given lattice structure are the same, the dual-phase design strategy significantly improves the bending performance of the lattice structure: the bending modulus is increased by 744.7%, and the specific energy absorption is increased by 243.5%.