用于数据驱动的空间负荷预测的长短期记忆神经网络算法

Qing Wang, Naigen Li
{"title":"用于数据驱动的空间负荷预测的长短期记忆神经网络算法","authors":"Qing Wang, Naigen Li","doi":"10.4018/ijiit.351239","DOIUrl":null,"url":null,"abstract":"Based on the LSTM neural network, the author proposes a new data-driven spatial load prediction method to analyze the time series within the neural network, avoid data depression, and determine the correlation of the training data space. Establish prediction models based on different neurons, reduce the dimensionality of collected data through data preprocessing, and ensure data integrity. At the same time, provide data management base, control model input and output, unify process model, ensure training sequence model, combine LSTM neural network model, select prediction method, and finish data-driven related transportation. Experimental results show that the data driven global load forecasting model based on LSTM neural network proposed in this paper takes 1.23 seconds to complete 8000 training data, when traditional data drive spatial load forecasting method based on CNN neural network takes 3.56 seconds to finish 8000 training data. It can be seen that the prediction method proposed in this article has a good prediction accuracy.","PeriodicalId":510176,"journal":{"name":"International Journal of Intelligent Information Technologies","volume":"12 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Long Short-Term Memory Neural Network Algorithm for Data-Driven Spatial Load Forecasting\",\"authors\":\"Qing Wang, Naigen Li\",\"doi\":\"10.4018/ijiit.351239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the LSTM neural network, the author proposes a new data-driven spatial load prediction method to analyze the time series within the neural network, avoid data depression, and determine the correlation of the training data space. Establish prediction models based on different neurons, reduce the dimensionality of collected data through data preprocessing, and ensure data integrity. At the same time, provide data management base, control model input and output, unify process model, ensure training sequence model, combine LSTM neural network model, select prediction method, and finish data-driven related transportation. Experimental results show that the data driven global load forecasting model based on LSTM neural network proposed in this paper takes 1.23 seconds to complete 8000 training data, when traditional data drive spatial load forecasting method based on CNN neural network takes 3.56 seconds to finish 8000 training data. It can be seen that the prediction method proposed in this article has a good prediction accuracy.\",\"PeriodicalId\":510176,\"journal\":{\"name\":\"International Journal of Intelligent Information Technologies\",\"volume\":\"12 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijiit.351239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijiit.351239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于 LSTM 神经网络,作者提出了一种新的数据驱动空间负荷预测方法,在神经网络内分析时间序列,避免数据压抑,确定训练数据空间的相关性。建立基于不同神经元的预测模型,通过数据预处理降低采集数据的维度,保证数据的完整性。同时,提供数据管理基础,控制模型输入和输出,统一流程模型,确保训练序列模型,结合 LSTM 神经网络模型,选择预测方法,完成数据驱动的相关运输。实验结果表明,本文提出的基于 LSTM 神经网络的数据驱动全局负荷预测模型完成 8000 个训练数据需要 1.23 秒,而传统的基于 CNN 神经网络的数据驱动空间负荷预测方法完成 8000 个训练数据需要 3.56 秒。由此可见,本文提出的预测方法具有较好的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Long Short-Term Memory Neural Network Algorithm for Data-Driven Spatial Load Forecasting
Based on the LSTM neural network, the author proposes a new data-driven spatial load prediction method to analyze the time series within the neural network, avoid data depression, and determine the correlation of the training data space. Establish prediction models based on different neurons, reduce the dimensionality of collected data through data preprocessing, and ensure data integrity. At the same time, provide data management base, control model input and output, unify process model, ensure training sequence model, combine LSTM neural network model, select prediction method, and finish data-driven related transportation. Experimental results show that the data driven global load forecasting model based on LSTM neural network proposed in this paper takes 1.23 seconds to complete 8000 training data, when traditional data drive spatial load forecasting method based on CNN neural network takes 3.56 seconds to finish 8000 training data. It can be seen that the prediction method proposed in this article has a good prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信