B. E., Vinodh Kumar Elumalai, Dhanasekaran Sandhiya, R. M. Swarna Priya, S. P. Shantharajah
{"title":"帕金森病检测和分期分类:通过变模分解和 DCNN 架构进行步态定量评估","authors":"B. E., Vinodh Kumar Elumalai, Dhanasekaran Sandhiya, R. M. Swarna Priya, S. P. Shantharajah","doi":"10.1080/09540091.2024.2383894","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":50629,"journal":{"name":"Connection Science","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parkinson's disease detection and stage classification: quantitative gait evaluation through variational mode decomposition and DCNN architecture\",\"authors\":\"B. E., Vinodh Kumar Elumalai, Dhanasekaran Sandhiya, R. M. Swarna Priya, S. P. Shantharajah\",\"doi\":\"10.1080/09540091.2024.2383894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":50629,\"journal\":{\"name\":\"Connection Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connection Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09540091.2024.2383894\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connection Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09540091.2024.2383894","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
期刊介绍:
Connection Science is an interdisciplinary journal dedicated to exploring the convergence of the analytic and synthetic sciences, including neuroscience, computational modelling, artificial intelligence, machine learning, deep learning, Database, Big Data, quantum computing, Blockchain, Zero-Knowledge, Internet of Things, Cybersecurity, and parallel and distributed computing.
A strong focus is on the articles arising from connectionist, probabilistic, dynamical, or evolutionary approaches in aspects of Computer Science, applied applications, and systems-level computational subjects that seek to understand models in science and engineering.