具有灵活误差结构的单变量模型的宏观经济实时预测

IF 3.4 3区 经济学 Q1 ECONOMICS
Kelly Trinh, Bo Zhang, Chenghan Hou
{"title":"具有灵活误差结构的单变量模型的宏观经济实时预测","authors":"Kelly Trinh, Bo Zhang, Chenghan Hou","doi":"10.1002/for.3182","DOIUrl":null,"url":null,"abstract":"This paper investigates the importance of flexible error structure specifications in two widely used univariate models, namely, autoregressive and unobserved component models, in fitting and forecasting 20 significant US macroeconomic variables. The in‐sample estimation reveals that the models with flexible error structures provide better in‐sample fit than the univariate models with homoscedastic errors. Furthermore, the density forecast analysis suggests that accommodating heavy tail, stochastic volatility, and serial correlation in error structures leads to significant improvements in short‐term forecasts. For most macroeconomic variables, the univariate models tend to yield more accurate one‐step‐ahead forecasts than the multivariate (vector autoregressive) models in terms of both point and density forecasts.","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macroeconomic real‐time forecasts of univariate models with flexible error structures\",\"authors\":\"Kelly Trinh, Bo Zhang, Chenghan Hou\",\"doi\":\"10.1002/for.3182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the importance of flexible error structure specifications in two widely used univariate models, namely, autoregressive and unobserved component models, in fitting and forecasting 20 significant US macroeconomic variables. The in‐sample estimation reveals that the models with flexible error structures provide better in‐sample fit than the univariate models with homoscedastic errors. Furthermore, the density forecast analysis suggests that accommodating heavy tail, stochastic volatility, and serial correlation in error structures leads to significant improvements in short‐term forecasts. For most macroeconomic variables, the univariate models tend to yield more accurate one‐step‐ahead forecasts than the multivariate (vector autoregressive) models in terms of both point and density forecasts.\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1002/for.3182\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1002/for.3182","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了自回归模型和无观测成分模型这两种广泛使用的单变量模型中灵活误差结构规格在拟合和预测 20 个重要美国宏观经济变量中的重要性。样本内估计结果显示,具有灵活误差结构的模型比具有同方差误差的单变量模型具有更好的样本内拟合效果。此外,密度预测分析表明,在误差结构中考虑重尾、随机波动性和序列相关性可显著改善短期预测。对于大多数宏观经济变量,单变量模型往往比多变量(向量自回归)模型的点预测和密度预测更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Macroeconomic real‐time forecasts of univariate models with flexible error structures
This paper investigates the importance of flexible error structure specifications in two widely used univariate models, namely, autoregressive and unobserved component models, in fitting and forecasting 20 significant US macroeconomic variables. The in‐sample estimation reveals that the models with flexible error structures provide better in‐sample fit than the univariate models with homoscedastic errors. Furthermore, the density forecast analysis suggests that accommodating heavy tail, stochastic volatility, and serial correlation in error structures leads to significant improvements in short‐term forecasts. For most macroeconomic variables, the univariate models tend to yield more accurate one‐step‐ahead forecasts than the multivariate (vector autoregressive) models in terms of both point and density forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信