基于机器学习的 3D 打印六边形格子夹层结构抗压强度预测方法

IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES
Narain kumar Sivakumar, Kaaviya J, Sabarinathan Palaniyappan, Mohammed Azeem P, S. Basavarajappa, Ihab M. Moussa, Mohamed Ibrahim Hashem
{"title":"基于机器学习的 3D 打印六边形格子夹层结构抗压强度预测方法","authors":"Narain kumar Sivakumar, Kaaviya J, Sabarinathan Palaniyappan, Mohammed Azeem P, S. Basavarajappa, Ihab M. Moussa, Mohamed Ibrahim Hashem","doi":"10.1177/08927057241270791","DOIUrl":null,"url":null,"abstract":"The utilization of Fused Filament Fabrication (FFF) technology for developing sandwich structures proves to be an effective approach, enabling the rapid construction of intricate profiles and gaining widespread recognition for diverse structural applications. In this study, hexagon lattice-cored sandwich structures are created by situating the lattice core at the center of the PLA polymeric specimens. The performance is assessed by varying 3D-Printing Factors (3D-PFs), including Nozzle Temperature (NT), Layer Height (LH), Printing Speed (PS), and Line Width (LW). The levels of 3D-PFs are manipulated as follows: NT (180, 190, 200, 210°C), LH (0.15, 0.2, 0.25, 0.3 mm), PS (15, 20, 25, 30 mm/sec), and LW (0.1, 0.2, 0.3, 0.4 mm). By employing a FFF 3D printer, the sandwich specimens are 3D-printed and their compression properties are assessed using a Universal Testing Machine (UTM). In this research, various Machine Learning (ML) models namely Bayesian Ridge regression (BRid), Elastic Net linear regression (EN), Quantile Regression (QR), and Support Vector Machine (SVM) are utilized to predict the compressive strength/density property of the developed sandwich structure. This aids in determining the optimal levels of 3D-PFs to achieve enhanced compressive strength/density. The results reveal that the QR model, particularly when employed in the boosting ensemble technique, exhibits superior accuracy with a Root Mean Square Error (RMSE) of 0.26 × 104, Mean Absolute Error (MAE) of 0.21 × 104, and Median Absolute Error (MedAE) of 0.16 × 104. Utilizing the QR model within the boosting ensemble technique, the influence of 3D-PFs on resulting compressive strength/density is analyzed, facilitating the identification of optimized 3D-PF levels for improved compressive strength/density. Sandwich structures fabricated at these optimized levels demonstrate enhanced compressive properties, making them suitable for a variety of structural applications.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based approach for predicting the compressive strength of 3D printed hexagon lattice-cored sandwich structures\",\"authors\":\"Narain kumar Sivakumar, Kaaviya J, Sabarinathan Palaniyappan, Mohammed Azeem P, S. Basavarajappa, Ihab M. Moussa, Mohamed Ibrahim Hashem\",\"doi\":\"10.1177/08927057241270791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utilization of Fused Filament Fabrication (FFF) technology for developing sandwich structures proves to be an effective approach, enabling the rapid construction of intricate profiles and gaining widespread recognition for diverse structural applications. In this study, hexagon lattice-cored sandwich structures are created by situating the lattice core at the center of the PLA polymeric specimens. The performance is assessed by varying 3D-Printing Factors (3D-PFs), including Nozzle Temperature (NT), Layer Height (LH), Printing Speed (PS), and Line Width (LW). The levels of 3D-PFs are manipulated as follows: NT (180, 190, 200, 210°C), LH (0.15, 0.2, 0.25, 0.3 mm), PS (15, 20, 25, 30 mm/sec), and LW (0.1, 0.2, 0.3, 0.4 mm). By employing a FFF 3D printer, the sandwich specimens are 3D-printed and their compression properties are assessed using a Universal Testing Machine (UTM). In this research, various Machine Learning (ML) models namely Bayesian Ridge regression (BRid), Elastic Net linear regression (EN), Quantile Regression (QR), and Support Vector Machine (SVM) are utilized to predict the compressive strength/density property of the developed sandwich structure. This aids in determining the optimal levels of 3D-PFs to achieve enhanced compressive strength/density. The results reveal that the QR model, particularly when employed in the boosting ensemble technique, exhibits superior accuracy with a Root Mean Square Error (RMSE) of 0.26 × 104, Mean Absolute Error (MAE) of 0.21 × 104, and Median Absolute Error (MedAE) of 0.16 × 104. Utilizing the QR model within the boosting ensemble technique, the influence of 3D-PFs on resulting compressive strength/density is analyzed, facilitating the identification of optimized 3D-PF levels for improved compressive strength/density. Sandwich structures fabricated at these optimized levels demonstrate enhanced compressive properties, making them suitable for a variety of structural applications.\",\"PeriodicalId\":17446,\"journal\":{\"name\":\"Journal of Thermoplastic Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermoplastic Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/08927057241270791\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/08927057241270791","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

事实证明,利用熔融长丝制造(FFF)技术开发夹层结构是一种有效的方法,能够快速构建复杂的轮廓,并在各种结构应用中获得广泛认可。在本研究中,通过将晶格核心置于聚乳酸聚合物试样的中心,创建了六边形晶格夹层结构。通过改变三维打印因子(3D-PFs),包括喷嘴温度(NT)、层高(LH)、打印速度(PS)和线宽(LW),对其性能进行了评估。3D-PFs的水平控制如下:NT(180、190、200、210°C)、LH(0.15、0.2、0.25、0.3 毫米)、PS(15、20、25、30 毫米/秒)和 LW(0.1、0.2、0.3、0.4 毫米)。通过使用 FFF 三维打印机,夹层试样被三维打印出来,并使用万能试验机(UTM)对其压缩性能进行评估。在这项研究中,使用了各种机器学习(ML)模型,即贝叶斯岭回归(BRid)、弹性网线性回归(EN)、量子回归(QR)和支持向量机(SVM)来预测所开发夹层结构的抗压强度/密度特性。这有助于确定 3D-PF 的最佳水平,以实现更高的抗压强度/密度。结果表明,QR 模型,尤其是在增强集合技术中使用时,表现出卓越的准确性,均方根误差 (RMSE) 为 0.26 × 104,平均绝对误差 (MAE) 为 0.21 × 104,中位绝对误差 (MedAE) 为 0.16 × 104。利用增强集合技术中的 QR 模型,分析了 3D-PF 对所产生的抗压强度/密度的影响,从而确定了优化的 3D-PF 水平,以提高抗压强度/密度。在这些优化水平下制造的夹层结构显示出更强的抗压性能,使其适用于各种结构应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-based approach for predicting the compressive strength of 3D printed hexagon lattice-cored sandwich structures
The utilization of Fused Filament Fabrication (FFF) technology for developing sandwich structures proves to be an effective approach, enabling the rapid construction of intricate profiles and gaining widespread recognition for diverse structural applications. In this study, hexagon lattice-cored sandwich structures are created by situating the lattice core at the center of the PLA polymeric specimens. The performance is assessed by varying 3D-Printing Factors (3D-PFs), including Nozzle Temperature (NT), Layer Height (LH), Printing Speed (PS), and Line Width (LW). The levels of 3D-PFs are manipulated as follows: NT (180, 190, 200, 210°C), LH (0.15, 0.2, 0.25, 0.3 mm), PS (15, 20, 25, 30 mm/sec), and LW (0.1, 0.2, 0.3, 0.4 mm). By employing a FFF 3D printer, the sandwich specimens are 3D-printed and their compression properties are assessed using a Universal Testing Machine (UTM). In this research, various Machine Learning (ML) models namely Bayesian Ridge regression (BRid), Elastic Net linear regression (EN), Quantile Regression (QR), and Support Vector Machine (SVM) are utilized to predict the compressive strength/density property of the developed sandwich structure. This aids in determining the optimal levels of 3D-PFs to achieve enhanced compressive strength/density. The results reveal that the QR model, particularly when employed in the boosting ensemble technique, exhibits superior accuracy with a Root Mean Square Error (RMSE) of 0.26 × 104, Mean Absolute Error (MAE) of 0.21 × 104, and Median Absolute Error (MedAE) of 0.16 × 104. Utilizing the QR model within the boosting ensemble technique, the influence of 3D-PFs on resulting compressive strength/density is analyzed, facilitating the identification of optimized 3D-PF levels for improved compressive strength/density. Sandwich structures fabricated at these optimized levels demonstrate enhanced compressive properties, making them suitable for a variety of structural applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermoplastic Composite Materials
Journal of Thermoplastic Composite Materials 工程技术-材料科学:复合
CiteScore
8.00
自引率
18.20%
发文量
104
审稿时长
5.9 months
期刊介绍: The Journal of Thermoplastic Composite Materials is a fully peer-reviewed international journal that publishes original research and review articles on polymers, nanocomposites, and particulate-, discontinuous-, and continuous-fiber-reinforced materials in the areas of processing, materials science, mechanics, durability, design, non destructive evaluation and manufacturing science. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信