Zhimin Sun, Shen Chen, Taiping Yao, Ran Yi, Shouhong Ding, Lizhuang Ma
{"title":"利用多视角感官学习反思开放世界深度假货归属问题","authors":"Zhimin Sun, Shen Chen, Taiping Yao, Ran Yi, Shouhong Ding, Lizhuang Ma","doi":"10.1007/s11263-024-02184-7","DOIUrl":null,"url":null,"abstract":"<p>The challenge in sourcing attribution for forgery faces has gained widespread attention due to the rapid development of generative techniques. While many recent works have taken essential steps on GAN-generated faces, more threatening attacks related to identity swapping or diffusion models are still overlooked. And the forgery traces hidden in unknown attacks from the open-world unlabeled faces remain under-explored. To push the related frontier research, we introduce a novel task named Open-World DeepFake Attribution, and the corresponding benchmark OW-DFA++, which aims to evaluate attribution performance against various types of fake faces in open-world scenarios. Meanwhile, we propose a Multi-Perspective Sensory Learning (MPSL) framework that aims to address the challenge of OW-DFA++. Since different forged faces have different tampering regions and frequency artifacts, we introduce the Multi-Perception Voting (MPV) module, which aligns inter-sample features based on global, multi-scale local, and frequency relations. The MPV module effectively filters and groups together samples belonging to the same attack type. Pseudo-labeling is another common and effective strategy in semi-supervised learning tasks, and we propose the Confidence-Adaptive Pseudo-labeling (CAP) module, using soft pseudo-labeling to enhance the class compactness and mitigate pseudo-noise induced by similar novel attack methods. The CAP module imposes strong constraints and adaptively filters samples with high uncertainty to improve the accuracy of the pseudo-labeling. In addition, we extend the MPSL framework with a multi-stage paradigm that leverages pre-train technique and iterative learning to further enhance traceability performance. Extensive experiments and visualizations verify the superiority of our proposed method on the OW-DFA++ and demonstrate the interpretability of the deepfake attribution task and its impact on improving the security of the deepfake detection area.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"191 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rethinking Open-World DeepFake Attribution with Multi-perspective Sensory Learning\",\"authors\":\"Zhimin Sun, Shen Chen, Taiping Yao, Ran Yi, Shouhong Ding, Lizhuang Ma\",\"doi\":\"10.1007/s11263-024-02184-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The challenge in sourcing attribution for forgery faces has gained widespread attention due to the rapid development of generative techniques. While many recent works have taken essential steps on GAN-generated faces, more threatening attacks related to identity swapping or diffusion models are still overlooked. And the forgery traces hidden in unknown attacks from the open-world unlabeled faces remain under-explored. To push the related frontier research, we introduce a novel task named Open-World DeepFake Attribution, and the corresponding benchmark OW-DFA++, which aims to evaluate attribution performance against various types of fake faces in open-world scenarios. Meanwhile, we propose a Multi-Perspective Sensory Learning (MPSL) framework that aims to address the challenge of OW-DFA++. Since different forged faces have different tampering regions and frequency artifacts, we introduce the Multi-Perception Voting (MPV) module, which aligns inter-sample features based on global, multi-scale local, and frequency relations. The MPV module effectively filters and groups together samples belonging to the same attack type. Pseudo-labeling is another common and effective strategy in semi-supervised learning tasks, and we propose the Confidence-Adaptive Pseudo-labeling (CAP) module, using soft pseudo-labeling to enhance the class compactness and mitigate pseudo-noise induced by similar novel attack methods. The CAP module imposes strong constraints and adaptively filters samples with high uncertainty to improve the accuracy of the pseudo-labeling. In addition, we extend the MPSL framework with a multi-stage paradigm that leverages pre-train technique and iterative learning to further enhance traceability performance. Extensive experiments and visualizations verify the superiority of our proposed method on the OW-DFA++ and demonstrate the interpretability of the deepfake attribution task and its impact on improving the security of the deepfake detection area.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"191 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02184-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02184-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Rethinking Open-World DeepFake Attribution with Multi-perspective Sensory Learning
The challenge in sourcing attribution for forgery faces has gained widespread attention due to the rapid development of generative techniques. While many recent works have taken essential steps on GAN-generated faces, more threatening attacks related to identity swapping or diffusion models are still overlooked. And the forgery traces hidden in unknown attacks from the open-world unlabeled faces remain under-explored. To push the related frontier research, we introduce a novel task named Open-World DeepFake Attribution, and the corresponding benchmark OW-DFA++, which aims to evaluate attribution performance against various types of fake faces in open-world scenarios. Meanwhile, we propose a Multi-Perspective Sensory Learning (MPSL) framework that aims to address the challenge of OW-DFA++. Since different forged faces have different tampering regions and frequency artifacts, we introduce the Multi-Perception Voting (MPV) module, which aligns inter-sample features based on global, multi-scale local, and frequency relations. The MPV module effectively filters and groups together samples belonging to the same attack type. Pseudo-labeling is another common and effective strategy in semi-supervised learning tasks, and we propose the Confidence-Adaptive Pseudo-labeling (CAP) module, using soft pseudo-labeling to enhance the class compactness and mitigate pseudo-noise induced by similar novel attack methods. The CAP module imposes strong constraints and adaptively filters samples with high uncertainty to improve the accuracy of the pseudo-labeling. In addition, we extend the MPSL framework with a multi-stage paradigm that leverages pre-train technique and iterative learning to further enhance traceability performance. Extensive experiments and visualizations verify the superiority of our proposed method on the OW-DFA++ and demonstrate the interpretability of the deepfake attribution task and its impact on improving the security of the deepfake detection area.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.