Soheila Molaei, Nima Ghanbari Bousejin, Ghadeer O Ghosheh, Anshul Thakur, Vinod Kumar Chauhan, Tingting Zhu, David A Clifton
{"title":"CliqueFluxNet:利用图神经网络的随机边缘流动和最大簇利用揭示电子病历洞察力","authors":"Soheila Molaei, Nima Ghanbari Bousejin, Ghadeer O Ghosheh, Anshul Thakur, Vinod Kumar Chauhan, Tingting Zhu, David A Clifton","doi":"10.1007/s41666-024-00169-2","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic Health Records (EHRs) play a crucial role in shaping predictive are models, yet they encounter challenges such as significant data gaps and class imbalances. Traditional Graph Neural Network (GNN) approaches have limitations in fully leveraging neighbourhood data or demanding intensive computational requirements for regularisation. To address this challenge, we introduce CliqueFluxNet, a novel framework that innovatively constructs a patient similarity graph to maximise cliques, thereby highlighting strong inter-patient connections. At the heart of CliqueFluxNet lies its stochastic edge fluxing strategy - a dynamic process involving random edge addition and removal during training. This strategy aims to enhance the model's generalisability and mitigate overfitting. Our empirical analysis, conducted on MIMIC-III and eICU datasets, focuses on the tasks of mortality and readmission prediction. It demonstrates significant progress in representation learning, particularly in scenarios with limited data availability. Qualitative assessments further underscore CliqueFluxNet's effectiveness in extracting meaningful EHR representations, solidifying its potential for advancing GNN applications in healthcare analytics.</p>","PeriodicalId":101413,"journal":{"name":"Journal of healthcare informatics research","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310186/pdf/","citationCount":"0","resultStr":"{\"title\":\"CliqueFluxNet: Unveiling EHR Insights with Stochastic Edge Fluxing and Maximal Clique Utilisation Using Graph Neural Networks.\",\"authors\":\"Soheila Molaei, Nima Ghanbari Bousejin, Ghadeer O Ghosheh, Anshul Thakur, Vinod Kumar Chauhan, Tingting Zhu, David A Clifton\",\"doi\":\"10.1007/s41666-024-00169-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electronic Health Records (EHRs) play a crucial role in shaping predictive are models, yet they encounter challenges such as significant data gaps and class imbalances. Traditional Graph Neural Network (GNN) approaches have limitations in fully leveraging neighbourhood data or demanding intensive computational requirements for regularisation. To address this challenge, we introduce CliqueFluxNet, a novel framework that innovatively constructs a patient similarity graph to maximise cliques, thereby highlighting strong inter-patient connections. At the heart of CliqueFluxNet lies its stochastic edge fluxing strategy - a dynamic process involving random edge addition and removal during training. This strategy aims to enhance the model's generalisability and mitigate overfitting. Our empirical analysis, conducted on MIMIC-III and eICU datasets, focuses on the tasks of mortality and readmission prediction. It demonstrates significant progress in representation learning, particularly in scenarios with limited data availability. Qualitative assessments further underscore CliqueFluxNet's effectiveness in extracting meaningful EHR representations, solidifying its potential for advancing GNN applications in healthcare analytics.</p>\",\"PeriodicalId\":101413,\"journal\":{\"name\":\"Journal of healthcare informatics research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310186/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of healthcare informatics research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41666-024-00169-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of healthcare informatics research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-024-00169-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
CliqueFluxNet: Unveiling EHR Insights with Stochastic Edge Fluxing and Maximal Clique Utilisation Using Graph Neural Networks.
Electronic Health Records (EHRs) play a crucial role in shaping predictive are models, yet they encounter challenges such as significant data gaps and class imbalances. Traditional Graph Neural Network (GNN) approaches have limitations in fully leveraging neighbourhood data or demanding intensive computational requirements for regularisation. To address this challenge, we introduce CliqueFluxNet, a novel framework that innovatively constructs a patient similarity graph to maximise cliques, thereby highlighting strong inter-patient connections. At the heart of CliqueFluxNet lies its stochastic edge fluxing strategy - a dynamic process involving random edge addition and removal during training. This strategy aims to enhance the model's generalisability and mitigate overfitting. Our empirical analysis, conducted on MIMIC-III and eICU datasets, focuses on the tasks of mortality and readmission prediction. It demonstrates significant progress in representation learning, particularly in scenarios with limited data availability. Qualitative assessments further underscore CliqueFluxNet's effectiveness in extracting meaningful EHR representations, solidifying its potential for advancing GNN applications in healthcare analytics.