细胞内过亚硝酸扰乱了结核分枝杆菌的氧化还原平衡、生物能和Fe-S簇平衡。

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Arshiya Dewan , Charu Jain , Mayashree Das , Ashutosh Tripathi , Ajay Kumar Sharma , Harshit Singh , Nitish Malhotra , Aswin Sai Narain Seshasayee , Harinath Chakrapani , Amit Singh
{"title":"细胞内过亚硝酸扰乱了结核分枝杆菌的氧化还原平衡、生物能和Fe-S簇平衡。","authors":"Arshiya Dewan ,&nbsp;Charu Jain ,&nbsp;Mayashree Das ,&nbsp;Ashutosh Tripathi ,&nbsp;Ajay Kumar Sharma ,&nbsp;Harshit Singh ,&nbsp;Nitish Malhotra ,&nbsp;Aswin Sai Narain Seshasayee ,&nbsp;Harinath Chakrapani ,&nbsp;Amit Singh","doi":"10.1016/j.redox.2024.103285","DOIUrl":null,"url":null,"abstract":"<div><p>The ability of <em>Mycobacterium tuberculosis</em> (<em>Mtb</em>) to tolerate nitric oxide (<sup>•</sup>NO) and superoxide (O<sub>2</sub><sup>•−</sup>) produced by phagocytes contributes to its success as a human pathogen. Recombination of <sup>•</sup>NO and O<sub>2</sub><sup>•−</sup> generates peroxynitrite (ONOO<sup>−</sup>), a potent oxidant produced inside activated macrophages causing lethality in diverse organisms. While the response of <em>Mtb</em> toward <sup>•</sup>NO and O<sub>2</sub><sup>•−</sup> is well established, how <em>Mtb</em> responds to ONOO<sup>−</sup> remains unclear. Filling this knowledge gap is important to understand the persistence mechanisms of <em>Mtb</em> during infection. We synthesized a series of compounds that generate both <sup>•</sup>NO and O<sub>2</sub><sup>•−</sup>, which should combine to produce ONOO<sup>−</sup>. From this library, we identified CJ067 that permeates <em>Mtb</em> to reliably enhance intracellular ONOO<sup>−</sup> levels. CJ067-exposed <em>Mtb</em> strains, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates, exhibited dose-dependent, long-lasting oxidative stress and growth inhibition. In contrast, <em>Mycobacterium smegmatis</em> (<em>Msm</em>), a fast-growing, non-pathogenic mycobacterial species, maintained redox balance and growth in response to intracellular ONOO<sup>−</sup>. RNA-sequencing with <em>Mtb</em> revealed that CJ067 induces antioxidant machinery, sulphur metabolism, metal homeostasis, and a 4Fe–4S cluster repair pathway (<em>suf</em> operon). CJ067 impaired the activity of the 4Fe–4S cluster-containing TCA cycle enzyme, aconitase, and diminished bioenergetics of <em>Mtb</em>. Work with <em>Mtb</em> strains defective in SUF and IscS involved in Fe–S cluster biogenesis pathways showed that both systems cooperatively protect <em>Mtb</em> from intracellular ONOO<sup>−</sup> in vitro and inducible nitric oxide synthase (iNOS)-dependent growth inhibition during macrophage infection. Thus, <em>Mtb</em> is uniquely sensitive to intracellular ONOO<sup>−</sup> and targeting Fe–S cluster homeostasis is expected to promote iNOS-dependent host immunity against tuberculosis (TB).</p></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"75 ","pages":"Article 103285"},"PeriodicalIF":10.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213231724002635/pdfft?md5=4c6de3e95effd169f784227cfb6579cf&pid=1-s2.0-S2213231724002635-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Intracellular peroxynitrite perturbs redox balance, bioenergetics, and Fe–S cluster homeostasis in Mycobacterium tuberculosis\",\"authors\":\"Arshiya Dewan ,&nbsp;Charu Jain ,&nbsp;Mayashree Das ,&nbsp;Ashutosh Tripathi ,&nbsp;Ajay Kumar Sharma ,&nbsp;Harshit Singh ,&nbsp;Nitish Malhotra ,&nbsp;Aswin Sai Narain Seshasayee ,&nbsp;Harinath Chakrapani ,&nbsp;Amit Singh\",\"doi\":\"10.1016/j.redox.2024.103285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ability of <em>Mycobacterium tuberculosis</em> (<em>Mtb</em>) to tolerate nitric oxide (<sup>•</sup>NO) and superoxide (O<sub>2</sub><sup>•−</sup>) produced by phagocytes contributes to its success as a human pathogen. Recombination of <sup>•</sup>NO and O<sub>2</sub><sup>•−</sup> generates peroxynitrite (ONOO<sup>−</sup>), a potent oxidant produced inside activated macrophages causing lethality in diverse organisms. While the response of <em>Mtb</em> toward <sup>•</sup>NO and O<sub>2</sub><sup>•−</sup> is well established, how <em>Mtb</em> responds to ONOO<sup>−</sup> remains unclear. Filling this knowledge gap is important to understand the persistence mechanisms of <em>Mtb</em> during infection. We synthesized a series of compounds that generate both <sup>•</sup>NO and O<sub>2</sub><sup>•−</sup>, which should combine to produce ONOO<sup>−</sup>. From this library, we identified CJ067 that permeates <em>Mtb</em> to reliably enhance intracellular ONOO<sup>−</sup> levels. CJ067-exposed <em>Mtb</em> strains, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates, exhibited dose-dependent, long-lasting oxidative stress and growth inhibition. In contrast, <em>Mycobacterium smegmatis</em> (<em>Msm</em>), a fast-growing, non-pathogenic mycobacterial species, maintained redox balance and growth in response to intracellular ONOO<sup>−</sup>. RNA-sequencing with <em>Mtb</em> revealed that CJ067 induces antioxidant machinery, sulphur metabolism, metal homeostasis, and a 4Fe–4S cluster repair pathway (<em>suf</em> operon). CJ067 impaired the activity of the 4Fe–4S cluster-containing TCA cycle enzyme, aconitase, and diminished bioenergetics of <em>Mtb</em>. Work with <em>Mtb</em> strains defective in SUF and IscS involved in Fe–S cluster biogenesis pathways showed that both systems cooperatively protect <em>Mtb</em> from intracellular ONOO<sup>−</sup> in vitro and inducible nitric oxide synthase (iNOS)-dependent growth inhibition during macrophage infection. Thus, <em>Mtb</em> is uniquely sensitive to intracellular ONOO<sup>−</sup> and targeting Fe–S cluster homeostasis is expected to promote iNOS-dependent host immunity against tuberculosis (TB).</p></div>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"75 \",\"pages\":\"Article 103285\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213231724002635/pdfft?md5=4c6de3e95effd169f784227cfb6579cf&pid=1-s2.0-S2213231724002635-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213231724002635\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231724002635","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

结核分枝杆菌(Mtb)能够耐受吞噬细胞产生的一氧化氮(-NO)和超氧化物(O2--),这是它成功成为人类病原体的原因之一。-NO和O2--重组产生过氧化亚硝酸盐(ONOO-),这是一种在活化的巨噬细胞内产生的强效氧化剂,可导致多种生物死亡。虽然Mtb对-NO和-O2-的反应已经明确,但Mtb如何对ONOO-做出反应仍不清楚。填补这一知识空白对于了解Mtb在感染期间的存活机制非常重要。我们合成了一系列同时产生-NO和O2--的化合物,这两种物质结合在一起就会产生ONOO-。从这个化合物库中,我们发现了CJ067,它能渗透Mtb,可靠地提高细胞内ONOO-的水平。暴露于 CJ067 的 Mtb 菌株,包括耐多药(MDR)和广泛耐药(XDR)的临床分离株,表现出剂量依赖性的、持久的氧化应激和生长抑制。相比之下,生长迅速的非致病性分枝杆菌(Msm)在细胞内 ONOO- 的作用下保持了氧化还原平衡和生长。Mtb的RNA测序显示,CJ067诱导抗氧化机制、硫代谢、金属平衡和4Fe-4S簇修复途径(suf操作子)。CJ067 削弱了含 4Fe-4S 簇的 TCA 循环酶乌头酶的活性,降低了 Mtb 的生物能。对参与 Fe-S 簇生物生成途径的 SUF 和 IscS 存在缺陷的 Mtb 菌株进行的研究表明,这两个系统能在体外协同保护 Mtb 免受细胞内 ONOO 的影响,并在巨噬细胞感染过程中保护 Mtb 免受诱导型一氧化氮合酶(iNOS)依赖性生长抑制的影响。因此,Mtb对细胞内ONOO-具有独特的敏感性,以Fe-S簇平衡为目标有望促进宿主对结核病(TB)的iNOS依赖性免疫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intracellular peroxynitrite perturbs redox balance, bioenergetics, and Fe–S cluster homeostasis in Mycobacterium tuberculosis

Intracellular peroxynitrite perturbs redox balance, bioenergetics, and Fe–S cluster homeostasis in Mycobacterium tuberculosis

The ability of Mycobacterium tuberculosis (Mtb) to tolerate nitric oxide (NO) and superoxide (O2•−) produced by phagocytes contributes to its success as a human pathogen. Recombination of NO and O2•− generates peroxynitrite (ONOO), a potent oxidant produced inside activated macrophages causing lethality in diverse organisms. While the response of Mtb toward NO and O2•− is well established, how Mtb responds to ONOO remains unclear. Filling this knowledge gap is important to understand the persistence mechanisms of Mtb during infection. We synthesized a series of compounds that generate both NO and O2•−, which should combine to produce ONOO. From this library, we identified CJ067 that permeates Mtb to reliably enhance intracellular ONOO levels. CJ067-exposed Mtb strains, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates, exhibited dose-dependent, long-lasting oxidative stress and growth inhibition. In contrast, Mycobacterium smegmatis (Msm), a fast-growing, non-pathogenic mycobacterial species, maintained redox balance and growth in response to intracellular ONOO. RNA-sequencing with Mtb revealed that CJ067 induces antioxidant machinery, sulphur metabolism, metal homeostasis, and a 4Fe–4S cluster repair pathway (suf operon). CJ067 impaired the activity of the 4Fe–4S cluster-containing TCA cycle enzyme, aconitase, and diminished bioenergetics of Mtb. Work with Mtb strains defective in SUF and IscS involved in Fe–S cluster biogenesis pathways showed that both systems cooperatively protect Mtb from intracellular ONOO in vitro and inducible nitric oxide synthase (iNOS)-dependent growth inhibition during macrophage infection. Thus, Mtb is uniquely sensitive to intracellular ONOO and targeting Fe–S cluster homeostasis is expected to promote iNOS-dependent host immunity against tuberculosis (TB).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信