{"title":"垂直陀螺仪:板、梁和陀螺仪多重结构的模态分析。","authors":"K H Madine, D J Colquitt","doi":"10.1098/rsta.2023.0358","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a study of the perpendicular gyroscope, which is formed of two orthogonal beams, a flexural plate and a gyroscope. Two sets of chiral-torsional boundary conditions are derived to analytically model the dynamic effects of the gyroscope while taking into account the broken symmetries of the system. The perpendicular junction causes the coupling of the compressional, flexural and torsional displacements in the system. This complex behaviour is accounted for with a comprehensive set of kinematic and dynamic junction conditions. Modal analysis demonstrates the fully coupled system and reveals how the spinning gyroscope induces dynamic chiral Chladni patterns in the plate.This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 2)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2279","pages":"20230358"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338564/pdf/","citationCount":"0","resultStr":"{\"title\":\"The perpendicular gyroscope: modal analysis of plate, beam and gyroscope multistructures.\",\"authors\":\"K H Madine, D J Colquitt\",\"doi\":\"10.1098/rsta.2023.0358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a study of the perpendicular gyroscope, which is formed of two orthogonal beams, a flexural plate and a gyroscope. Two sets of chiral-torsional boundary conditions are derived to analytically model the dynamic effects of the gyroscope while taking into account the broken symmetries of the system. The perpendicular junction causes the coupling of the compressional, flexural and torsional displacements in the system. This complex behaviour is accounted for with a comprehensive set of kinematic and dynamic junction conditions. Modal analysis demonstrates the fully coupled system and reveals how the spinning gyroscope induces dynamic chiral Chladni patterns in the plate.This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 2)'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2279\",\"pages\":\"20230358\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338564/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0358\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0358","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The perpendicular gyroscope: modal analysis of plate, beam and gyroscope multistructures.
This paper presents a study of the perpendicular gyroscope, which is formed of two orthogonal beams, a flexural plate and a gyroscope. Two sets of chiral-torsional boundary conditions are derived to analytically model the dynamic effects of the gyroscope while taking into account the broken symmetries of the system. The perpendicular junction causes the coupling of the compressional, flexural and torsional displacements in the system. This complex behaviour is accounted for with a comprehensive set of kinematic and dynamic junction conditions. Modal analysis demonstrates the fully coupled system and reveals how the spinning gyroscope induces dynamic chiral Chladni patterns in the plate.This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 2)'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.