论几何相位在弹性波导动力学中的作用。

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mohit Kumar, Fabio Semperlotti
{"title":"论几何相位在弹性波导动力学中的作用。","authors":"Mohit Kumar, Fabio Semperlotti","doi":"10.1098/rsta.2023.0357","DOIUrl":null,"url":null,"abstract":"<p><p>The geometric phase provides important mathematical insights to understand the fundamental nature and evolution of the dynamic response in a wide spectrum of systems ranging from quantum to classical mechanics. While the concept of geometric phase, which is an additional phase factor occurring in dynamical systems, holds the same meaning across different fields of application, its use and interpretation can acquire important nuances specific to the system of interest. In recent years, the development of quantum topological materials and its extension to classical mechanical systems have renewed the interest in the concept of geometric phase. This review revisits the concept of geometric phase and discusses, by means of either established or original results, its critical role in the design and dynamic behaviour of elastic waveguides. Concepts of differential geometry and topology are put forward to provide a theoretical understanding of the geometric phase and its connection to the physical properties of the system. Then, the concept of geometric phase is applied to different types of elastic waveguides to explain how either topologically trivial or non-trivial behaviour can emerge based on the geometric features of the waveguide. This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 2)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2279","pages":"20230357"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the role of geometric phase in the dynamics of elastic waveguides.\",\"authors\":\"Mohit Kumar, Fabio Semperlotti\",\"doi\":\"10.1098/rsta.2023.0357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The geometric phase provides important mathematical insights to understand the fundamental nature and evolution of the dynamic response in a wide spectrum of systems ranging from quantum to classical mechanics. While the concept of geometric phase, which is an additional phase factor occurring in dynamical systems, holds the same meaning across different fields of application, its use and interpretation can acquire important nuances specific to the system of interest. In recent years, the development of quantum topological materials and its extension to classical mechanical systems have renewed the interest in the concept of geometric phase. This review revisits the concept of geometric phase and discusses, by means of either established or original results, its critical role in the design and dynamic behaviour of elastic waveguides. Concepts of differential geometry and topology are put forward to provide a theoretical understanding of the geometric phase and its connection to the physical properties of the system. Then, the concept of geometric phase is applied to different types of elastic waveguides to explain how either topologically trivial or non-trivial behaviour can emerge based on the geometric features of the waveguide. This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 2)'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2279\",\"pages\":\"20230357\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0357\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0357","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

几何相位提供了重要的数学见解,有助于理解从量子力学到经典力学等各种系统中动态响应的基本性质和演变。几何相位是动态系统中出现的附加相位因子,其概念在不同的应用领域具有相同的含义,但其使用和解释会因相关系统的具体情况而产生重要的细微差别。近年来,量子拓扑材料的发展及其在经典力学系统中的应用重新激发了人们对几何相位概念的兴趣。这篇综述重新审视了几何相位的概念,并通过已有的或原创的成果,讨论了它在弹性波导的设计和动态行为中的关键作用。通过提出微分几何学和拓扑学的概念,从理论上理解几何相位及其与系统物理特性的联系。然后,将几何相位的概念应用于不同类型的弹性波导,以解释如何根据波导的几何特征出现拓扑琐碎或非琐碎行为。本文是主题 "弹性和声学超材料科学的最新发展(第二部分)"的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the role of geometric phase in the dynamics of elastic waveguides.

The geometric phase provides important mathematical insights to understand the fundamental nature and evolution of the dynamic response in a wide spectrum of systems ranging from quantum to classical mechanics. While the concept of geometric phase, which is an additional phase factor occurring in dynamical systems, holds the same meaning across different fields of application, its use and interpretation can acquire important nuances specific to the system of interest. In recent years, the development of quantum topological materials and its extension to classical mechanical systems have renewed the interest in the concept of geometric phase. This review revisits the concept of geometric phase and discusses, by means of either established or original results, its critical role in the design and dynamic behaviour of elastic waveguides. Concepts of differential geometry and topology are put forward to provide a theoretical understanding of the geometric phase and its connection to the physical properties of the system. Then, the concept of geometric phase is applied to different types of elastic waveguides to explain how either topologically trivial or non-trivial behaviour can emerge based on the geometric features of the waveguide. This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 2)'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信