Lulu Yan, Shuxia Ding, Yan He, Bin Fu, Changshui Chen, Haibo Li
{"title":"一名中国 I 型粘多糖病患者的 4 号染色体全父系单亲断裂伴有新型同源 IDUA 剪接变异 c.159-9T>A。","authors":"Lulu Yan, Shuxia Ding, Yan He, Bin Fu, Changshui Chen, Haibo Li","doi":"10.1002/mgg3.2507","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mucopolysaccharidosis type I (MPS-I) is a rare autosomal recessive genetic lysosomal storage disorder that is caused by pathogenic variants of the α-L-iduronidase (IDUA) gene. This study aimed to identify the genetic causes of MPS-I in a Chinese patient and construct a minigene of IDUA to analyze its variants upon splicing.</p><p><strong>Methods: </strong>Whole-exome sequencing (WES) and Sanger sequencing were used to confirm the potential causative variants. Single-nucleotide polymorphism (SNP) array was subsequently performed to confirm uniparental disomy (UPD). Minigene assay was performed to analyze the effect on splicing of mRNA. We meanwhile explored the conservative analysis and protein homology simulation.</p><p><strong>Results: </strong>A novel homozygous splicing mutation of IDUA, c.159-9T>A, was identified in an individual presenting with overlapping features of MPS-I. Interestingly, only the father and sisters, but not the mother, carried the variant in a heterozygous state. WES and SNP array analyses validated paternal UPD on chromosome 4. Minigene splicing revealed two aberrant splicing events: exon 2 skipping and intron 1 retention. Moreover, the specific structure of the mutant protein obviously changed according to the results of the homologous model.</p><p><strong>Conclusions: </strong>This study describes a rare autosomal recessive disorder with paternal UPD of chromosome 4 leading to the homozygosity of the IDUA splicing variant in patients with MPS-I for the first time. This study expands the variant spectrum of IDUA and provides insights into the splicing system, facilitating its enhanced diagnosis and treatment.</p>","PeriodicalId":18852,"journal":{"name":"Molecular Genetics & Genomic Medicine","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318027/pdf/","citationCount":"0","resultStr":"{\"title\":\"Whole paternal uniparental disomy of chromosome 4 with a novel homozygous IDUA splicing variant, c.159-9T>A, in a Chinese patient with mucopolysaccharidosis type I.\",\"authors\":\"Lulu Yan, Shuxia Ding, Yan He, Bin Fu, Changshui Chen, Haibo Li\",\"doi\":\"10.1002/mgg3.2507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mucopolysaccharidosis type I (MPS-I) is a rare autosomal recessive genetic lysosomal storage disorder that is caused by pathogenic variants of the α-L-iduronidase (IDUA) gene. This study aimed to identify the genetic causes of MPS-I in a Chinese patient and construct a minigene of IDUA to analyze its variants upon splicing.</p><p><strong>Methods: </strong>Whole-exome sequencing (WES) and Sanger sequencing were used to confirm the potential causative variants. Single-nucleotide polymorphism (SNP) array was subsequently performed to confirm uniparental disomy (UPD). Minigene assay was performed to analyze the effect on splicing of mRNA. We meanwhile explored the conservative analysis and protein homology simulation.</p><p><strong>Results: </strong>A novel homozygous splicing mutation of IDUA, c.159-9T>A, was identified in an individual presenting with overlapping features of MPS-I. Interestingly, only the father and sisters, but not the mother, carried the variant in a heterozygous state. WES and SNP array analyses validated paternal UPD on chromosome 4. Minigene splicing revealed two aberrant splicing events: exon 2 skipping and intron 1 retention. Moreover, the specific structure of the mutant protein obviously changed according to the results of the homologous model.</p><p><strong>Conclusions: </strong>This study describes a rare autosomal recessive disorder with paternal UPD of chromosome 4 leading to the homozygosity of the IDUA splicing variant in patients with MPS-I for the first time. This study expands the variant spectrum of IDUA and provides insights into the splicing system, facilitating its enhanced diagnosis and treatment.</p>\",\"PeriodicalId\":18852,\"journal\":{\"name\":\"Molecular Genetics & Genomic Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318027/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics & Genomic Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mgg3.2507\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics & Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mgg3.2507","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Whole paternal uniparental disomy of chromosome 4 with a novel homozygous IDUA splicing variant, c.159-9T>A, in a Chinese patient with mucopolysaccharidosis type I.
Background: Mucopolysaccharidosis type I (MPS-I) is a rare autosomal recessive genetic lysosomal storage disorder that is caused by pathogenic variants of the α-L-iduronidase (IDUA) gene. This study aimed to identify the genetic causes of MPS-I in a Chinese patient and construct a minigene of IDUA to analyze its variants upon splicing.
Methods: Whole-exome sequencing (WES) and Sanger sequencing were used to confirm the potential causative variants. Single-nucleotide polymorphism (SNP) array was subsequently performed to confirm uniparental disomy (UPD). Minigene assay was performed to analyze the effect on splicing of mRNA. We meanwhile explored the conservative analysis and protein homology simulation.
Results: A novel homozygous splicing mutation of IDUA, c.159-9T>A, was identified in an individual presenting with overlapping features of MPS-I. Interestingly, only the father and sisters, but not the mother, carried the variant in a heterozygous state. WES and SNP array analyses validated paternal UPD on chromosome 4. Minigene splicing revealed two aberrant splicing events: exon 2 skipping and intron 1 retention. Moreover, the specific structure of the mutant protein obviously changed according to the results of the homologous model.
Conclusions: This study describes a rare autosomal recessive disorder with paternal UPD of chromosome 4 leading to the homozygosity of the IDUA splicing variant in patients with MPS-I for the first time. This study expands the variant spectrum of IDUA and provides insights into the splicing system, facilitating its enhanced diagnosis and treatment.
期刊介绍:
Molecular Genetics & Genomic Medicine is a peer-reviewed journal for rapid dissemination of quality research related to the dynamically developing areas of human, molecular and medical genetics. The journal publishes original research articles covering findings in phenotypic, molecular, biological, and genomic aspects of genomic variation, inherited disorders and birth defects. The broad publishing spectrum of Molecular Genetics & Genomic Medicine includes rare and common disorders from diagnosis to treatment. Examples of appropriate articles include reports of novel disease genes, functional studies of genetic variants, in-depth genotype-phenotype studies, genomic analysis of inherited disorders, molecular diagnostic methods, medical bioinformatics, ethical, legal, and social implications (ELSI), and approaches to clinical diagnosis. Molecular Genetics & Genomic Medicine provides a scientific home for next generation sequencing studies of rare and common disorders, which will make research in this fascinating area easily and rapidly accessible to the scientific community. This will serve as the basis for translating next generation sequencing studies into individualized diagnostics and therapeutics, for day-to-day medical care.
Molecular Genetics & Genomic Medicine publishes original research articles, reviews, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented.