{"title":"探索鞣花酸在 okadaic 酸诱导的阿尔茨海默氏症表型中发挥神经保护作用的分子机制。","authors":"Tourandokht Baluchnejadmojarad, Mehrdad Roghani","doi":"10.1007/s11011-024-01405-9","DOIUrl":null,"url":null,"abstract":"<p><p>Pomegranate polyphenol ellagic acid has medicinal potential in neurodegenerative disorders. The advantageous effect of this polyphenol in improving cognition in okadaic acid (OA)-instigated murine model with unraveling some modes of its action was assessed. Rats received ICV okadaic acid (OA) and post-treated with oral ellagic acid for 3 weeks (25 and 100 mg/kg/day). Cognition was analyzed in behavioral tasks besides assessment of oxidative, apoptotic, and inflammatory factors in addition to hippocampal histochemical analysis. Ellagic acid at a dose of 100 mg/kg properly attenuated cognitive abnormalities in novel object recognition (NOR), Y maze, and Barnes maze tests. Additionally, ellagic acid diminished hippocampal changes of malondialdehyde (MDA), protein carbonyl, reactive oxygen species (ROS), glutathione (GSH), glutathione peroxidase, superoxide dismutase (SOD), apoptotic factors caspases 1 and 3, tumor necrosis factor α (TNFα), and acetylcholinesterase (AChE) and beta secretase 1 (BACE 1) besides reversal of AMP-activated protein kinase (AMPK) and hyperphosphorylated tau (p-tau). Moreover, lower glial fibrillary acidic protein (GFAP) and less injury of hippocampal CA1 pyramidal neurons were observed upon ellagic acid. To conclude, neuroprotective potential of ellagic acid was shown which is somewhat attributable to its reversal of oxidative, apoptotic, and neuroinflammatory events in addition to proper regulation of AMPK and p-tau.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the molecular mechanisms underlying neuroprotective effect of ellagic acid in okadaic acid-induced Alzheimer's phenotype.\",\"authors\":\"Tourandokht Baluchnejadmojarad, Mehrdad Roghani\",\"doi\":\"10.1007/s11011-024-01405-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pomegranate polyphenol ellagic acid has medicinal potential in neurodegenerative disorders. The advantageous effect of this polyphenol in improving cognition in okadaic acid (OA)-instigated murine model with unraveling some modes of its action was assessed. Rats received ICV okadaic acid (OA) and post-treated with oral ellagic acid for 3 weeks (25 and 100 mg/kg/day). Cognition was analyzed in behavioral tasks besides assessment of oxidative, apoptotic, and inflammatory factors in addition to hippocampal histochemical analysis. Ellagic acid at a dose of 100 mg/kg properly attenuated cognitive abnormalities in novel object recognition (NOR), Y maze, and Barnes maze tests. Additionally, ellagic acid diminished hippocampal changes of malondialdehyde (MDA), protein carbonyl, reactive oxygen species (ROS), glutathione (GSH), glutathione peroxidase, superoxide dismutase (SOD), apoptotic factors caspases 1 and 3, tumor necrosis factor α (TNFα), and acetylcholinesterase (AChE) and beta secretase 1 (BACE 1) besides reversal of AMP-activated protein kinase (AMPK) and hyperphosphorylated tau (p-tau). Moreover, lower glial fibrillary acidic protein (GFAP) and less injury of hippocampal CA1 pyramidal neurons were observed upon ellagic acid. To conclude, neuroprotective potential of ellagic acid was shown which is somewhat attributable to its reversal of oxidative, apoptotic, and neuroinflammatory events in addition to proper regulation of AMPK and p-tau.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11011-024-01405-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-024-01405-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Exploring the molecular mechanisms underlying neuroprotective effect of ellagic acid in okadaic acid-induced Alzheimer's phenotype.
Pomegranate polyphenol ellagic acid has medicinal potential in neurodegenerative disorders. The advantageous effect of this polyphenol in improving cognition in okadaic acid (OA)-instigated murine model with unraveling some modes of its action was assessed. Rats received ICV okadaic acid (OA) and post-treated with oral ellagic acid for 3 weeks (25 and 100 mg/kg/day). Cognition was analyzed in behavioral tasks besides assessment of oxidative, apoptotic, and inflammatory factors in addition to hippocampal histochemical analysis. Ellagic acid at a dose of 100 mg/kg properly attenuated cognitive abnormalities in novel object recognition (NOR), Y maze, and Barnes maze tests. Additionally, ellagic acid diminished hippocampal changes of malondialdehyde (MDA), protein carbonyl, reactive oxygen species (ROS), glutathione (GSH), glutathione peroxidase, superoxide dismutase (SOD), apoptotic factors caspases 1 and 3, tumor necrosis factor α (TNFα), and acetylcholinesterase (AChE) and beta secretase 1 (BACE 1) besides reversal of AMP-activated protein kinase (AMPK) and hyperphosphorylated tau (p-tau). Moreover, lower glial fibrillary acidic protein (GFAP) and less injury of hippocampal CA1 pyramidal neurons were observed upon ellagic acid. To conclude, neuroprotective potential of ellagic acid was shown which is somewhat attributable to its reversal of oxidative, apoptotic, and neuroinflammatory events in addition to proper regulation of AMPK and p-tau.