在药物设计阶段对人体药代动力学进行可操作的预测。

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
ACS Applied Energy Materials Pub Date : 2024-09-02 Epub Date: 2024-08-12 DOI:10.1021/acs.molpharmaceut.4c00311
Leonid Komissarov, Nenad Manevski, Katrin Groebke Zbinden, Torsten Schindler, Marinka Zitnik, Lisa Sach-Peltason
{"title":"在药物设计阶段对人体药代动力学进行可操作的预测。","authors":"Leonid Komissarov, Nenad Manevski, Katrin Groebke Zbinden, Torsten Schindler, Marinka Zitnik, Lisa Sach-Peltason","doi":"10.1021/acs.molpharmaceut.4c00311","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel computational approach for predicting human pharmacokinetics (PK) that addresses the challenges of early stage drug design. Our study introduces and describes a large-scale data set of 11 clinical PK end points, encompassing over 2700 unique chemical structures to train machine learning models. To that end multiple advanced training strategies are compared, including the integration of in vitro data and a novel self-supervised pretraining task. In addition to the predictions, our final model provides meaningful epistemic uncertainties for every data point. This allows us to successfully identify regions of exceptional predictive performance, with an absolute average fold error (AAFE/geometric mean fold error) of less than 2.5 across multiple end points. Together, these advancements represent a significant leap toward actionable PK predictions, which can be utilized early on in the drug design process to expedite development and reduce reliance on nonclinical studies.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Actionable Predictions of Human Pharmacokinetics at the Drug Design Stage.\",\"authors\":\"Leonid Komissarov, Nenad Manevski, Katrin Groebke Zbinden, Torsten Schindler, Marinka Zitnik, Lisa Sach-Peltason\",\"doi\":\"10.1021/acs.molpharmaceut.4c00311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a novel computational approach for predicting human pharmacokinetics (PK) that addresses the challenges of early stage drug design. Our study introduces and describes a large-scale data set of 11 clinical PK end points, encompassing over 2700 unique chemical structures to train machine learning models. To that end multiple advanced training strategies are compared, including the integration of in vitro data and a novel self-supervised pretraining task. In addition to the predictions, our final model provides meaningful epistemic uncertainties for every data point. This allows us to successfully identify regions of exceptional predictive performance, with an absolute average fold error (AAFE/geometric mean fold error) of less than 2.5 across multiple end points. Together, these advancements represent a significant leap toward actionable PK predictions, which can be utilized early on in the drug design process to expedite development and reduce reliance on nonclinical studies.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c00311\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00311","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种预测人体药代动力学(PK)的新型计算方法,以应对早期药物设计所面临的挑战。我们的研究介绍并描述了一个包含 11 个临床 PK 终点的大规模数据集,其中包含 2700 多种独特的化学结构,用于训练机器学习模型。为此,我们比较了多种先进的训练策略,包括体外数据整合和新颖的自监督预训练任务。除了预测之外,我们的最终模型还为每个数据点提供了有意义的认识不确定性。这使我们能够成功识别出预测性能优异的区域,多个终点的绝对平均折叠误差(AAFE/几何平均折叠误差)小于 2.5。这些进步共同代表了向可操作的 PK 预测的重大飞跃,可在药物设计过程中尽早利用,以加快研发速度并减少对非临床研究的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Actionable Predictions of Human Pharmacokinetics at the Drug Design Stage.

Actionable Predictions of Human Pharmacokinetics at the Drug Design Stage.

We present a novel computational approach for predicting human pharmacokinetics (PK) that addresses the challenges of early stage drug design. Our study introduces and describes a large-scale data set of 11 clinical PK end points, encompassing over 2700 unique chemical structures to train machine learning models. To that end multiple advanced training strategies are compared, including the integration of in vitro data and a novel self-supervised pretraining task. In addition to the predictions, our final model provides meaningful epistemic uncertainties for every data point. This allows us to successfully identify regions of exceptional predictive performance, with an absolute average fold error (AAFE/geometric mean fold error) of less than 2.5 across multiple end points. Together, these advancements represent a significant leap toward actionable PK predictions, which can be utilized early on in the drug design process to expedite development and reduce reliance on nonclinical studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信