用于 3D SMLM 数据聚类的各向异性 DBSCAN。

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2024-08-22 Epub Date: 2024-08-12 DOI:10.1021/acs.jpcb.4c02030
Pilar Lörzing, Philipp Schake, Michael Schlierf
{"title":"用于 3D SMLM 数据聚类的各向异性 DBSCAN。","authors":"Pilar Lörzing, Philipp Schake, Michael Schlierf","doi":"10.1021/acs.jpcb.4c02030","DOIUrl":null,"url":null,"abstract":"<p><p>Single-molecule localization microscopy (SMLM) advanced biological discoveries beyond the diffraction limit. Various implementations enable 3D SMLM to reconstruct volumetric cell images. Yet, the inherent anisotropic point spread function of optical microscopes often limits the localization precision in the axial direction compared to the lateral precision. Such localization anisotropy could also expand spherical cellular structures to ellipsoidal cellular structures. Structure identification, however, is often performed using DBSCAN cluster algorithms, considering an isotropic search volume. Here, we show that an anisotropic DBSCAN search volume identifies anisotropic clusters more reliably using simulated ground truth data sets. Given experimental localization precisions, we suggest optimized search parameters based on an expanded computational grid search and show an enhanced performance of anisotropic DBSCAN amidst variations in localization precision. We demonstrate the capability of anisotropic DBSCAN on experimental data and anticipate that the algorithm allows for a more rigorous identification of clusters in cells, considering the anisotropic localization precisions of astigmatism-based 3D SMLM.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"7934-7940"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346466/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anisotropic DBSCAN for 3D SMLM Data Clustering.\",\"authors\":\"Pilar Lörzing, Philipp Schake, Michael Schlierf\",\"doi\":\"10.1021/acs.jpcb.4c02030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-molecule localization microscopy (SMLM) advanced biological discoveries beyond the diffraction limit. Various implementations enable 3D SMLM to reconstruct volumetric cell images. Yet, the inherent anisotropic point spread function of optical microscopes often limits the localization precision in the axial direction compared to the lateral precision. Such localization anisotropy could also expand spherical cellular structures to ellipsoidal cellular structures. Structure identification, however, is often performed using DBSCAN cluster algorithms, considering an isotropic search volume. Here, we show that an anisotropic DBSCAN search volume identifies anisotropic clusters more reliably using simulated ground truth data sets. Given experimental localization precisions, we suggest optimized search parameters based on an expanded computational grid search and show an enhanced performance of anisotropic DBSCAN amidst variations in localization precision. We demonstrate the capability of anisotropic DBSCAN on experimental data and anticipate that the algorithm allows for a more rigorous identification of clusters in cells, considering the anisotropic localization precisions of astigmatism-based 3D SMLM.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"7934-7940\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346466/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.4c02030\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c02030","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

单分子定位显微镜(SMLM)推动了生物发现超越衍射极限。各种三维 SMLM 实现了重建体积细胞图像。然而,与横向精度相比,光学显微镜固有的各向异性点扩散函数往往限制了轴向的定位精度。这种定位各向异性还可能将球形细胞结构扩展为椭圆形细胞结构。然而,结构识别通常采用 DBSCAN 聚类算法,考虑各向同性的搜索体积。在这里,我们利用模拟地面实况数据集表明,各向异性的 DBSCAN 搜索体积能更可靠地识别各向异性的簇。考虑到实验定位精度,我们提出了基于扩展计算网格搜索的优化搜索参数,并展示了各向异性 DBSCAN 在定位精度变化中的增强性能。我们在实验数据上展示了各向异性 DBSCAN 的能力,并预计,考虑到基于散光的 3D SMLM 的各向异性定位精度,该算法可以更严格地识别细胞中的集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anisotropic DBSCAN for 3D SMLM Data Clustering.

Anisotropic DBSCAN for 3D SMLM Data Clustering.

Single-molecule localization microscopy (SMLM) advanced biological discoveries beyond the diffraction limit. Various implementations enable 3D SMLM to reconstruct volumetric cell images. Yet, the inherent anisotropic point spread function of optical microscopes often limits the localization precision in the axial direction compared to the lateral precision. Such localization anisotropy could also expand spherical cellular structures to ellipsoidal cellular structures. Structure identification, however, is often performed using DBSCAN cluster algorithms, considering an isotropic search volume. Here, we show that an anisotropic DBSCAN search volume identifies anisotropic clusters more reliably using simulated ground truth data sets. Given experimental localization precisions, we suggest optimized search parameters based on an expanded computational grid search and show an enhanced performance of anisotropic DBSCAN amidst variations in localization precision. We demonstrate the capability of anisotropic DBSCAN on experimental data and anticipate that the algorithm allows for a more rigorous identification of clusters in cells, considering the anisotropic localization precisions of astigmatism-based 3D SMLM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信