利用哨兵-2/3 时空融合和机器学习对灌区耕地土壤含水量进行日常监测

IF 8.6 Q1 REMOTE SENSING
Ruiqi Du , Youzhen Xiang , Junying Chen , Xianghui Lu , Fucang Zhang , Zhitao Zhang , Baocheng Yang , Zijun Tang , Xin Wang , Long Qian
{"title":"利用哨兵-2/3 时空融合和机器学习对灌区耕地土壤含水量进行日常监测","authors":"Ruiqi Du ,&nbsp;Youzhen Xiang ,&nbsp;Junying Chen ,&nbsp;Xianghui Lu ,&nbsp;Fucang Zhang ,&nbsp;Zhitao Zhang ,&nbsp;Baocheng Yang ,&nbsp;Zijun Tang ,&nbsp;Xin Wang ,&nbsp;Long Qian","doi":"10.1016/j.jag.2024.104081","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding soil moisture dynamics is crucial for crop growth. The digital mapping of field soil moisture distribution provides valuable information for agricultural water management. The optical satellite data provides fine scale soil moisture information for a region. However, these data are greatly limited due to cloud contamination and revisit period. Despite the reported beneficial effects of spatiotemporal fusion methods, the accurate estimates of high-resolution soil moisture through spatiotemporal fusion data are still unclear, particularly when using Sentinel-2/3 fusion images. This study introduces a new soil moisture estimation framework integrating spatio-temporal spectral information from Sentinel-2/3 fusion images and machine learning algorithm,and thus provide spatiotemporally continuous soil moisture estimation. The framework includes four fusion methods (ESTARRFM, Fit-FC, FSDAF and STFMF) and four machine learning models (PLSR, SVM, RF and GBRT). The feasibility of the framework was validated in the Hetao Irrigation Area of Inner Mongolia, China. The results showed that the Sentinel-2/3 fused image generated by Fit-FC was visually the closest to the true image, followed by ESTARFM, FSDAF, and STFMF. The spatiotemporal fusion-machine learning estimation framework provided reliable estimation for multi-layer (0 ∼ 20, 20 ∼ 40 and 40 ∼ 60 cm) soil water in the irrigation area. The dense time series of soil water generated by the framework facilitated the detection of irrigation events in the irrigated farmland. Our findings highlighted the effectiveness of Sentinel-2/3 fused images in providing high-resolution continuous daily monitoring of farmland soil water on a large scale. These high spatial–temporal resolution time series are valuable for monitoring crop growth and water resource management, contributing to further expanding the application of satellite remote sensing in precision agriculture.</p></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"132 ","pages":"Article 104081"},"PeriodicalIF":8.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569843224004357/pdfft?md5=eeef747a4daa4e83f77964c17e711268&pid=1-s2.0-S1569843224004357-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The daily soil water content monitoring of cropland in irrigation area using Sentinel-2/3 spatio-temporal fusion and machine learning\",\"authors\":\"Ruiqi Du ,&nbsp;Youzhen Xiang ,&nbsp;Junying Chen ,&nbsp;Xianghui Lu ,&nbsp;Fucang Zhang ,&nbsp;Zhitao Zhang ,&nbsp;Baocheng Yang ,&nbsp;Zijun Tang ,&nbsp;Xin Wang ,&nbsp;Long Qian\",\"doi\":\"10.1016/j.jag.2024.104081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding soil moisture dynamics is crucial for crop growth. The digital mapping of field soil moisture distribution provides valuable information for agricultural water management. The optical satellite data provides fine scale soil moisture information for a region. However, these data are greatly limited due to cloud contamination and revisit period. Despite the reported beneficial effects of spatiotemporal fusion methods, the accurate estimates of high-resolution soil moisture through spatiotemporal fusion data are still unclear, particularly when using Sentinel-2/3 fusion images. This study introduces a new soil moisture estimation framework integrating spatio-temporal spectral information from Sentinel-2/3 fusion images and machine learning algorithm,and thus provide spatiotemporally continuous soil moisture estimation. The framework includes four fusion methods (ESTARRFM, Fit-FC, FSDAF and STFMF) and four machine learning models (PLSR, SVM, RF and GBRT). The feasibility of the framework was validated in the Hetao Irrigation Area of Inner Mongolia, China. The results showed that the Sentinel-2/3 fused image generated by Fit-FC was visually the closest to the true image, followed by ESTARFM, FSDAF, and STFMF. The spatiotemporal fusion-machine learning estimation framework provided reliable estimation for multi-layer (0 ∼ 20, 20 ∼ 40 and 40 ∼ 60 cm) soil water in the irrigation area. The dense time series of soil water generated by the framework facilitated the detection of irrigation events in the irrigated farmland. Our findings highlighted the effectiveness of Sentinel-2/3 fused images in providing high-resolution continuous daily monitoring of farmland soil water on a large scale. These high spatial–temporal resolution time series are valuable for monitoring crop growth and water resource management, contributing to further expanding the application of satellite remote sensing in precision agriculture.</p></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"132 \",\"pages\":\"Article 104081\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1569843224004357/pdfft?md5=eeef747a4daa4e83f77964c17e711268&pid=1-s2.0-S1569843224004357-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224004357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224004357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

了解土壤水分动态对作物生长至关重要。绘制田间土壤水分分布数字地图为农业用水管理提供了宝贵的信息。光学卫星数据可提供一个地区的精细土壤水分信息。然而,由于云层污染和重访周期,这些数据受到很大限制。尽管有报道称时空融合方法具有良好的效果,但通过时空融合数据对高分辨率土壤水分的精确估算仍不明确,尤其是在使用哨兵-2/3 融合图像时。本研究提出了一种新的土壤水分估算框架,将哨兵-2/3 融合图像的时空光谱信息与机器学习算法相结合,从而提供时空连续的土壤水分估算。该框架包括四种融合方法(ESTARRFM、Fit-FC、FSDAF 和 STFMF)和四种机器学习模型(PLSR、SVM、RF 和 GBRT)。该框架的可行性在中国内蒙古河套灌区进行了验证。结果表明,Fit-FC生成的哨兵-2/3融合图像在视觉上最接近真实图像,其次是ESTARFM、FSDAF和STFMF。时空融合-机器学习估算框架为灌区多层(0 ∼ 20 厘米、20 ∼ 40 厘米和 40 ∼ 60 厘米)土壤水分提供了可靠的估算。该框架生成的密集土壤水时间序列有助于检测灌溉农田的灌溉事件。我们的研究结果突显了哨兵-2/3 融合图像在提供大范围农田土壤水高分辨率日常连续监测方面的有效性。这些高时空分辨率时间序列对于监测作物生长和水资源管理非常有价值,有助于进一步扩大卫星遥感在精准农业中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The daily soil water content monitoring of cropland in irrigation area using Sentinel-2/3 spatio-temporal fusion and machine learning

Understanding soil moisture dynamics is crucial for crop growth. The digital mapping of field soil moisture distribution provides valuable information for agricultural water management. The optical satellite data provides fine scale soil moisture information for a region. However, these data are greatly limited due to cloud contamination and revisit period. Despite the reported beneficial effects of spatiotemporal fusion methods, the accurate estimates of high-resolution soil moisture through spatiotemporal fusion data are still unclear, particularly when using Sentinel-2/3 fusion images. This study introduces a new soil moisture estimation framework integrating spatio-temporal spectral information from Sentinel-2/3 fusion images and machine learning algorithm,and thus provide spatiotemporally continuous soil moisture estimation. The framework includes four fusion methods (ESTARRFM, Fit-FC, FSDAF and STFMF) and four machine learning models (PLSR, SVM, RF and GBRT). The feasibility of the framework was validated in the Hetao Irrigation Area of Inner Mongolia, China. The results showed that the Sentinel-2/3 fused image generated by Fit-FC was visually the closest to the true image, followed by ESTARFM, FSDAF, and STFMF. The spatiotemporal fusion-machine learning estimation framework provided reliable estimation for multi-layer (0 ∼ 20, 20 ∼ 40 and 40 ∼ 60 cm) soil water in the irrigation area. The dense time series of soil water generated by the framework facilitated the detection of irrigation events in the irrigated farmland. Our findings highlighted the effectiveness of Sentinel-2/3 fused images in providing high-resolution continuous daily monitoring of farmland soil water on a large scale. These high spatial–temporal resolution time series are valuable for monitoring crop growth and water resource management, contributing to further expanding the application of satellite remote sensing in precision agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信