Sirt1-FoxO3a-Bnip3 轴和自噬介导的线粒体转换参与了小檗碱对高血糖 NRK-52E 细胞的保护。

IF 2.6 3区 医学 Q3 TOXICOLOGY
Sugandh Saxena , Sumit Kumar Anand , Ankita Sharma , Poonam Kakkar
{"title":"Sirt1-FoxO3a-Bnip3 轴和自噬介导的线粒体转换参与了小檗碱对高血糖 NRK-52E 细胞的保护。","authors":"Sugandh Saxena ,&nbsp;Sumit Kumar Anand ,&nbsp;Ankita Sharma ,&nbsp;Poonam Kakkar","doi":"10.1016/j.tiv.2024.105916","DOIUrl":null,"url":null,"abstract":"<div><p>Aberrant accumulation of dysfunctional mitochondria in renal cells during hyperglycemia signifies perturbed autophagy and mitochondrial turnover. This study aims to focus on the underlying mechanism involved in autophagy and mitophagy inducing efficacy of Berberine (isoquinoline alkaloid) in hyperglycemic NRK-52E cells. Berberine mediated protection to hyperglycemic cells prevented alteration in mitochondrial structure and function. Treatment with SRT-1720 (Sirt1 activator) enhanced autophagy, decreased apoptosis, upregulated expression of downstream moieties (FoxO3a and Bnip3) and ameliorated mitochondria related anomalies while nicotinamide (Sirt1 inhibitor) treatment exhibited reversal of the same. GFP reporter assay ascertained enhanced transcriptional activity of FoxO in Berberine-treated hyperglycemic cells, which was found to be correlated to increased expression of downstream protein Bnip3. Knocking down FoxO3a disrupted autophagy and stimulated apoptosis. <em>N</em>-acetyl-L-cysteine pre-treatment confirmed that generation of ROS intervened high glucose induced toxicity in NRK-52E cells. Berberine co-treatment resulted in differential expressions of key proteins involved in autophagy and mitophagy like LC3B, ATGs, Beclin1, Sirt1, Bnip3, FoxO3a and Parkin. Further, enhanced mitophagy in Berberine-treated cells was confirmed by transmission electron microscopy. Thus, our findings give evidence that the protection accorded by Berberine against hyperglycemia in renal proximal tubular cells (NRK-52E) involves instigation of Sirt1-FoxO3a-Bnip3 axis and autophagy mediated mitophagy induction.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"100 ","pages":"Article 105916"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Involvement of Sirt1-FoxO3a-Bnip3 axis and autophagy mediated mitochondrial turnover in according protection to hyperglycemic NRK-52E cells by Berberine\",\"authors\":\"Sugandh Saxena ,&nbsp;Sumit Kumar Anand ,&nbsp;Ankita Sharma ,&nbsp;Poonam Kakkar\",\"doi\":\"10.1016/j.tiv.2024.105916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aberrant accumulation of dysfunctional mitochondria in renal cells during hyperglycemia signifies perturbed autophagy and mitochondrial turnover. This study aims to focus on the underlying mechanism involved in autophagy and mitophagy inducing efficacy of Berberine (isoquinoline alkaloid) in hyperglycemic NRK-52E cells. Berberine mediated protection to hyperglycemic cells prevented alteration in mitochondrial structure and function. Treatment with SRT-1720 (Sirt1 activator) enhanced autophagy, decreased apoptosis, upregulated expression of downstream moieties (FoxO3a and Bnip3) and ameliorated mitochondria related anomalies while nicotinamide (Sirt1 inhibitor) treatment exhibited reversal of the same. GFP reporter assay ascertained enhanced transcriptional activity of FoxO in Berberine-treated hyperglycemic cells, which was found to be correlated to increased expression of downstream protein Bnip3. Knocking down FoxO3a disrupted autophagy and stimulated apoptosis. <em>N</em>-acetyl-L-cysteine pre-treatment confirmed that generation of ROS intervened high glucose induced toxicity in NRK-52E cells. Berberine co-treatment resulted in differential expressions of key proteins involved in autophagy and mitophagy like LC3B, ATGs, Beclin1, Sirt1, Bnip3, FoxO3a and Parkin. Further, enhanced mitophagy in Berberine-treated cells was confirmed by transmission electron microscopy. Thus, our findings give evidence that the protection accorded by Berberine against hyperglycemia in renal proximal tubular cells (NRK-52E) involves instigation of Sirt1-FoxO3a-Bnip3 axis and autophagy mediated mitophagy induction.</p></div>\",\"PeriodicalId\":54423,\"journal\":{\"name\":\"Toxicology in Vitro\",\"volume\":\"100 \",\"pages\":\"Article 105916\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology in Vitro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0887233324001462\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233324001462","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高血糖时,肾细胞中功能失调线粒体的异常积累表明自噬和线粒体周转受到干扰。本研究旨在关注小檗碱(异喹啉生物碱)在高血糖 NRK-52E 细胞中诱导自噬和线粒体吞噬的潜在机制。小檗碱对高血糖细胞的保护作用防止了线粒体结构和功能的改变。用 SRT-1720(Sirt1 激活剂)处理可增强自噬、减少细胞凋亡、上调下游分子(FoxO3a 和 Bnip3)的表达并改善线粒体相关的异常现象,而用烟酰胺(Sirt1 抑制剂)处理则可逆转自噬、减少细胞凋亡、上调下游分子(FoxO3a 和 Bnip3)的表达并改善线粒体相关的异常现象。GFP 报告分析发现,小檗碱处理的高血糖细胞中 FoxO 的转录活性增强,这与下游蛋白 Bnip3 的表达增加有关。敲除 FoxO3a 会破坏自噬并刺激细胞凋亡。N-acetyl-L-cysteine 预处理证实,ROS 的产生干预了高糖诱导的 NRK-52E 细胞毒性。小檗碱联合处理导致参与自噬和有丝分裂的关键蛋白如 LC3B、ATGs、Beclin1、Sirt1、Bnip3、FoxO3a 和 Parkin 的表达不同。此外,透射电子显微镜也证实了小檗碱处理的细胞中有丝分裂的增强。因此,我们的研究结果证明,小檗碱对肾近曲小管细胞(NRK-52E)高血糖的保护作用涉及到 Sirt1-FoxO3a-Bnip3 轴和自噬介导的有丝分裂诱导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Involvement of Sirt1-FoxO3a-Bnip3 axis and autophagy mediated mitochondrial turnover in according protection to hyperglycemic NRK-52E cells by Berberine

Involvement of Sirt1-FoxO3a-Bnip3 axis and autophagy mediated mitochondrial turnover in according protection to hyperglycemic NRK-52E cells by Berberine

Aberrant accumulation of dysfunctional mitochondria in renal cells during hyperglycemia signifies perturbed autophagy and mitochondrial turnover. This study aims to focus on the underlying mechanism involved in autophagy and mitophagy inducing efficacy of Berberine (isoquinoline alkaloid) in hyperglycemic NRK-52E cells. Berberine mediated protection to hyperglycemic cells prevented alteration in mitochondrial structure and function. Treatment with SRT-1720 (Sirt1 activator) enhanced autophagy, decreased apoptosis, upregulated expression of downstream moieties (FoxO3a and Bnip3) and ameliorated mitochondria related anomalies while nicotinamide (Sirt1 inhibitor) treatment exhibited reversal of the same. GFP reporter assay ascertained enhanced transcriptional activity of FoxO in Berberine-treated hyperglycemic cells, which was found to be correlated to increased expression of downstream protein Bnip3. Knocking down FoxO3a disrupted autophagy and stimulated apoptosis. N-acetyl-L-cysteine pre-treatment confirmed that generation of ROS intervened high glucose induced toxicity in NRK-52E cells. Berberine co-treatment resulted in differential expressions of key proteins involved in autophagy and mitophagy like LC3B, ATGs, Beclin1, Sirt1, Bnip3, FoxO3a and Parkin. Further, enhanced mitophagy in Berberine-treated cells was confirmed by transmission electron microscopy. Thus, our findings give evidence that the protection accorded by Berberine against hyperglycemia in renal proximal tubular cells (NRK-52E) involves instigation of Sirt1-FoxO3a-Bnip3 axis and autophagy mediated mitophagy induction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicology in Vitro
Toxicology in Vitro 医学-毒理学
CiteScore
6.50
自引率
3.10%
发文量
181
审稿时长
65 days
期刊介绍: Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信