{"title":"利用步态分析特征选择增强老年人跌倒风险预测能力","authors":"Sabri Altunkaya","doi":"10.1007/s11517-024-03180-2","DOIUrl":null,"url":null,"abstract":"<p><p>There is no effective fall risk screening tool for the elderly that can be integrated into clinical practice. Developing a system that can be easily used in primary care services is a current need. Current studies focus on the use of multiple sensors or activities to achieve higher accuracy. However, multiple sensors and activities reduce the availability of these systems. This study aims to develop a system to perform fall prediction for the elderly by using signals recorded from a single sensor during a short-term activity. A total of 168 features in the time and frequency domains were created using acceleration signals obtained from 71 elderly people. The features were weighted based on the ReliefF algorithm, and the artificial neural networks model was developed using the most important features. The best classification result was obtained using the 17 most important features of those weighted for K = 20 nearest neighbors. The highest accuracy was 82.2% (82.9% Sensitivity, 81.6% Specificity). The partially high accuracy obtained in our study shows that falling can be detected early with a sensor and a simple activity by determining the right features and can be easily applied in the assessment of the elderly during routine follow-ups.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"3887-3897"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568989/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging feature selection for enhanced fall risk prediction in elderly using gait analysis.\",\"authors\":\"Sabri Altunkaya\",\"doi\":\"10.1007/s11517-024-03180-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is no effective fall risk screening tool for the elderly that can be integrated into clinical practice. Developing a system that can be easily used in primary care services is a current need. Current studies focus on the use of multiple sensors or activities to achieve higher accuracy. However, multiple sensors and activities reduce the availability of these systems. This study aims to develop a system to perform fall prediction for the elderly by using signals recorded from a single sensor during a short-term activity. A total of 168 features in the time and frequency domains were created using acceleration signals obtained from 71 elderly people. The features were weighted based on the ReliefF algorithm, and the artificial neural networks model was developed using the most important features. The best classification result was obtained using the 17 most important features of those weighted for K = 20 nearest neighbors. The highest accuracy was 82.2% (82.9% Sensitivity, 81.6% Specificity). The partially high accuracy obtained in our study shows that falling can be detected early with a sensor and a simple activity by determining the right features and can be easily applied in the assessment of the elderly during routine follow-ups.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"3887-3897\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568989/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03180-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03180-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Leveraging feature selection for enhanced fall risk prediction in elderly using gait analysis.
There is no effective fall risk screening tool for the elderly that can be integrated into clinical practice. Developing a system that can be easily used in primary care services is a current need. Current studies focus on the use of multiple sensors or activities to achieve higher accuracy. However, multiple sensors and activities reduce the availability of these systems. This study aims to develop a system to perform fall prediction for the elderly by using signals recorded from a single sensor during a short-term activity. A total of 168 features in the time and frequency domains were created using acceleration signals obtained from 71 elderly people. The features were weighted based on the ReliefF algorithm, and the artificial neural networks model was developed using the most important features. The best classification result was obtained using the 17 most important features of those weighted for K = 20 nearest neighbors. The highest accuracy was 82.2% (82.9% Sensitivity, 81.6% Specificity). The partially high accuracy obtained in our study shows that falling can be detected early with a sensor and a simple activity by determining the right features and can be easily applied in the assessment of the elderly during routine follow-ups.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).