分数边界值问题和弹性粘性布朗运动

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mirko D’Ovidio
{"title":"分数边界值问题和弹性粘性布朗运动","authors":"Mirko D’Ovidio","doi":"10.1007/s13540-024-00313-0","DOIUrl":null,"url":null,"abstract":"<p>We extend the results obtained in [14] by introducing a new class of boundary value problems involving non-local dynamic boundary conditions. We focus on the problem to find a solution to a local problem on a domain <span>\\(\\varOmega \\)</span> with non-local dynamic conditions on the boundary <span>\\(\\partial \\varOmega \\)</span>. Due to the pioneering nature of the present research, we propose here the apparently simple case of <span>\\(\\varOmega =(0, \\infty )\\)</span> with boundary <span>\\(\\{0\\}\\)</span> of zero Lebesgue measure. Our results turn out to be instructive for the general case of boundary with positive (finite) Borel measures. Moreover, in our view, we bring new light to dynamic boundary value problems and the probabilistic description of the associated models.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional boundary value problems and elastic sticky brownian motions\",\"authors\":\"Mirko D’Ovidio\",\"doi\":\"10.1007/s13540-024-00313-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We extend the results obtained in [14] by introducing a new class of boundary value problems involving non-local dynamic boundary conditions. We focus on the problem to find a solution to a local problem on a domain <span>\\\\(\\\\varOmega \\\\)</span> with non-local dynamic conditions on the boundary <span>\\\\(\\\\partial \\\\varOmega \\\\)</span>. Due to the pioneering nature of the present research, we propose here the apparently simple case of <span>\\\\(\\\\varOmega =(0, \\\\infty )\\\\)</span> with boundary <span>\\\\(\\\\{0\\\\}\\\\)</span> of zero Lebesgue measure. Our results turn out to be instructive for the general case of boundary with positive (finite) Borel measures. Moreover, in our view, we bring new light to dynamic boundary value problems and the probabilistic description of the associated models.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00313-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00313-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们通过引入一类新的涉及非局部动态边界条件的边界值问题来扩展 [14] 中获得的结果。我们关注的问题是如何在边界条件为非局部动态条件的域\(\varOmega \)上找到局部问题的解。由于本研究的开创性,我们在此提出了一个看似简单的情况,即边界为零的 Lebesgue 测量的 \(\varOmega =(0, \infty )\) 。我们的结果对具有正(有限)Borel度量的边界的一般情况具有指导意义。此外,我们认为,我们为动态边界值问题和相关模型的概率描述带来了新的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fractional boundary value problems and elastic sticky brownian motions

Fractional boundary value problems and elastic sticky brownian motions

We extend the results obtained in [14] by introducing a new class of boundary value problems involving non-local dynamic boundary conditions. We focus on the problem to find a solution to a local problem on a domain \(\varOmega \) with non-local dynamic conditions on the boundary \(\partial \varOmega \). Due to the pioneering nature of the present research, we propose here the apparently simple case of \(\varOmega =(0, \infty )\) with boundary \(\{0\}\) of zero Lebesgue measure. Our results turn out to be instructive for the general case of boundary with positive (finite) Borel measures. Moreover, in our view, we bring new light to dynamic boundary value problems and the probabilistic description of the associated models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信