麦凯 $$I_\nu $$ 贝塞尔分布再探讨

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Dragana Jankov Maširević
{"title":"麦凯 $$I_\\nu $$ 贝塞尔分布再探讨","authors":"Dragana Jankov Maširević","doi":"10.1007/s13540-024-00322-z","DOIUrl":null,"url":null,"abstract":"<p>Bearing in mind an increasing popularity of the fractional calculus the main aim of this paper is to derive several new representation formulae for the cumulative distribution function (cdf) of the McKay <span>\\(I_\\nu \\)</span> Bessel distribution including the Grünwald-Letnikov fractional derivative; also, two connection formulae between cdf of the McKay <span>\\(I_\\nu \\)</span> random variable and the so–called Neumann series of modified Bessel functions of the first kind are established, providing, consequently, a new integral representation for such cdf in terms of a definite integral. Another fashion expression for the given cdf is derived in terms of the Grünwald-Letnikov fractional derivative of the widely applicable Marcum Q–function, which represents a certain simplification of the already existing relationship between McKay <span>\\(I_\\nu \\)</span> random variable and a Marcum Q–functions. The exposition ends with some open questions, drawing the interested reader’s attention, among others, to the summation of some Neumann series.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The McKay $$I_\\\\nu $$ Bessel distribution revisited\",\"authors\":\"Dragana Jankov Maširević\",\"doi\":\"10.1007/s13540-024-00322-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bearing in mind an increasing popularity of the fractional calculus the main aim of this paper is to derive several new representation formulae for the cumulative distribution function (cdf) of the McKay <span>\\\\(I_\\\\nu \\\\)</span> Bessel distribution including the Grünwald-Letnikov fractional derivative; also, two connection formulae between cdf of the McKay <span>\\\\(I_\\\\nu \\\\)</span> random variable and the so–called Neumann series of modified Bessel functions of the first kind are established, providing, consequently, a new integral representation for such cdf in terms of a definite integral. Another fashion expression for the given cdf is derived in terms of the Grünwald-Letnikov fractional derivative of the widely applicable Marcum Q–function, which represents a certain simplification of the already existing relationship between McKay <span>\\\\(I_\\\\nu \\\\)</span> random variable and a Marcum Q–functions. The exposition ends with some open questions, drawing the interested reader’s attention, among others, to the summation of some Neumann series.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00322-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00322-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

考虑到分式微积分的日益普及,本文的主要目的是为 McKay (I_\nu \)贝塞尔分布的累积分布函数(cdf)推导出几个新的表示公式,包括格伦瓦尔德-列特尼科夫分式导数;同时,在 McKay (I_\nu \)随机变量的 cdf 和第一类修正贝塞尔函数的所谓诺伊曼数列之间建立了两个连接公式,从而为这种 cdf 提供了一个新的定积分表示。根据广泛应用的马库姆 Q 函数的格伦瓦尔德-列特尼科夫分数导数推导出了给定 cdf 的另一个时尚表达式,它代表了麦凯(I_\nu \)随机变量与马库姆 Q 函数之间已有关系的某种简化。论述以一些开放性问题结束,提请感兴趣的读者注意一些诺伊曼级数的求和等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The McKay $$I_\nu $$ Bessel distribution revisited

Bearing in mind an increasing popularity of the fractional calculus the main aim of this paper is to derive several new representation formulae for the cumulative distribution function (cdf) of the McKay \(I_\nu \) Bessel distribution including the Grünwald-Letnikov fractional derivative; also, two connection formulae between cdf of the McKay \(I_\nu \) random variable and the so–called Neumann series of modified Bessel functions of the first kind are established, providing, consequently, a new integral representation for such cdf in terms of a definite integral. Another fashion expression for the given cdf is derived in terms of the Grünwald-Letnikov fractional derivative of the widely applicable Marcum Q–function, which represents a certain simplification of the already existing relationship between McKay \(I_\nu \) random variable and a Marcum Q–functions. The exposition ends with some open questions, drawing the interested reader’s attention, among others, to the summation of some Neumann series.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信