{"title":"论多分数随机延迟微分方程解的存在性和唯一性","authors":"Khaoula Bouguetof, Zaineb Mezdoud, Omar Kebiri, Carsten Hartmann","doi":"10.1007/s13540-024-00314-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study existence and uniqueness of solution stochastic differential equations involving fractional integrals driven by Riemann-Liouville multifractional Brownian motion and a standard Brownian. Then, we obtain approximate numerical solution of our problem and colon cancer chemotherapy effect model are presented to confirm our results. We show that considering time dependent Hurst parameters play an important role to get more realistic results.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"102 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence and uniqueness of the solution to multifractional stochastic delay differential equation\",\"authors\":\"Khaoula Bouguetof, Zaineb Mezdoud, Omar Kebiri, Carsten Hartmann\",\"doi\":\"10.1007/s13540-024-00314-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study existence and uniqueness of solution stochastic differential equations involving fractional integrals driven by Riemann-Liouville multifractional Brownian motion and a standard Brownian. Then, we obtain approximate numerical solution of our problem and colon cancer chemotherapy effect model are presented to confirm our results. We show that considering time dependent Hurst parameters play an important role to get more realistic results.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00314-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00314-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the existence and uniqueness of the solution to multifractional stochastic delay differential equation
In this paper we study existence and uniqueness of solution stochastic differential equations involving fractional integrals driven by Riemann-Liouville multifractional Brownian motion and a standard Brownian. Then, we obtain approximate numerical solution of our problem and colon cancer chemotherapy effect model are presented to confirm our results. We show that considering time dependent Hurst parameters play an important role to get more realistic results.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.