Thomas Feys;Liesbet Van der Perre;François Rottenberg
{"title":"迈向高能效大规模多输入多输出(MIMO):用于缓解非线性功率放大器失真的图神经网络编码","authors":"Thomas Feys;Liesbet Van der Perre;François Rottenberg","doi":"10.1109/TCCN.2024.3440921","DOIUrl":null,"url":null,"abstract":"Massive MIMO systems are typically designed assuming linear power amplifiers (PAs). However, PAs are most energy efficient close to saturation, where non-linear distortion arises. For conventional precoders, this distortion can coherently combine at user locations, limiting performance. We propose a graph neural network (GNN) to learn a mapping between channel and precoding matrices, which maximizes the sum rate affected by non-linear distortion, using a high-order polynomial PA model. In the distortion-limited regime, this GNN-based precoder outperforms zero forcing (ZF), ZF plus digital pre-distortion (DPD) and the distortion-aware beamforming (DAB) precoder from the state-of-the-art. At an input back-off of −3 dB the proposed precoder compared to ZF increases the sum rate by 8.60 and 8.84 bits/channel use for two and four users respectively. Radiation patterns show that these gains are achieved by transmitting the non-linear distortion in non-user directions. In the four user-case, for a fixed sum rate, the total consumed power (PA and processing) of the GNN-precoder is 3.24 and 1.44 times lower compared to ZF and ZF plus DPD respectively. A complexity analysis shows six orders of magnitude reduction compared to DAB precoding. This opens perspectives to operate PAs closer to saturation, which drastically increases their energy efficiency.","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"11 1","pages":"184-201"},"PeriodicalIF":7.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Energy-Efficient Massive MIMO: Graph Neural Network Precoding for Mitigating Non-Linear PA Distortion\",\"authors\":\"Thomas Feys;Liesbet Van der Perre;François Rottenberg\",\"doi\":\"10.1109/TCCN.2024.3440921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive MIMO systems are typically designed assuming linear power amplifiers (PAs). However, PAs are most energy efficient close to saturation, where non-linear distortion arises. For conventional precoders, this distortion can coherently combine at user locations, limiting performance. We propose a graph neural network (GNN) to learn a mapping between channel and precoding matrices, which maximizes the sum rate affected by non-linear distortion, using a high-order polynomial PA model. In the distortion-limited regime, this GNN-based precoder outperforms zero forcing (ZF), ZF plus digital pre-distortion (DPD) and the distortion-aware beamforming (DAB) precoder from the state-of-the-art. At an input back-off of −3 dB the proposed precoder compared to ZF increases the sum rate by 8.60 and 8.84 bits/channel use for two and four users respectively. Radiation patterns show that these gains are achieved by transmitting the non-linear distortion in non-user directions. In the four user-case, for a fixed sum rate, the total consumed power (PA and processing) of the GNN-precoder is 3.24 and 1.44 times lower compared to ZF and ZF plus DPD respectively. A complexity analysis shows six orders of magnitude reduction compared to DAB precoding. This opens perspectives to operate PAs closer to saturation, which drastically increases their energy efficiency.\",\"PeriodicalId\":13069,\"journal\":{\"name\":\"IEEE Transactions on Cognitive Communications and Networking\",\"volume\":\"11 1\",\"pages\":\"184-201\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cognitive Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10632064/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10632064/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Toward Energy-Efficient Massive MIMO: Graph Neural Network Precoding for Mitigating Non-Linear PA Distortion
Massive MIMO systems are typically designed assuming linear power amplifiers (PAs). However, PAs are most energy efficient close to saturation, where non-linear distortion arises. For conventional precoders, this distortion can coherently combine at user locations, limiting performance. We propose a graph neural network (GNN) to learn a mapping between channel and precoding matrices, which maximizes the sum rate affected by non-linear distortion, using a high-order polynomial PA model. In the distortion-limited regime, this GNN-based precoder outperforms zero forcing (ZF), ZF plus digital pre-distortion (DPD) and the distortion-aware beamforming (DAB) precoder from the state-of-the-art. At an input back-off of −3 dB the proposed precoder compared to ZF increases the sum rate by 8.60 and 8.84 bits/channel use for two and four users respectively. Radiation patterns show that these gains are achieved by transmitting the non-linear distortion in non-user directions. In the four user-case, for a fixed sum rate, the total consumed power (PA and processing) of the GNN-precoder is 3.24 and 1.44 times lower compared to ZF and ZF plus DPD respectively. A complexity analysis shows six orders of magnitude reduction compared to DAB precoding. This opens perspectives to operate PAs closer to saturation, which drastically increases their energy efficiency.
期刊介绍:
The IEEE Transactions on Cognitive Communications and Networking (TCCN) aims to publish high-quality manuscripts that push the boundaries of cognitive communications and networking research. Cognitive, in this context, refers to the application of perception, learning, reasoning, memory, and adaptive approaches in communication system design. The transactions welcome submissions that explore various aspects of cognitive communications and networks, focusing on innovative and holistic approaches to complex system design. Key topics covered include architecture, protocols, cross-layer design, and cognition cycle design for cognitive networks. Additionally, research on machine learning, artificial intelligence, end-to-end and distributed intelligence, software-defined networking, cognitive radios, spectrum sharing, and security and privacy issues in cognitive networks are of interest. The publication also encourages papers addressing novel services and applications enabled by these cognitive concepts.