多模态医学影像分割下可靠性学习和可解释决策的证据建模。

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Jianfeng Zhao , Shuo Li
{"title":"多模态医学影像分割下可靠性学习和可解释决策的证据建模。","authors":"Jianfeng Zhao ,&nbsp;Shuo Li","doi":"10.1016/j.compmedimag.2024.102422","DOIUrl":null,"url":null,"abstract":"<div><p>Reliability learning and interpretable decision-making are crucial for multi-modality medical image segmentation. Although many works have attempted multi-modality medical image segmentation, they rarely explore how much reliability is provided by each modality for segmentation. Moreover, the existing approach of decision-making such as the <span><math><mrow><mi>s</mi><mi>o</mi><mi>f</mi><mi>t</mi><mi>m</mi><mi>a</mi><mi>x</mi></mrow></math></span> function lacks the interpretability for multi-modality fusion. In this study, we proposed a novel approach named contextual discounted evidential network (CDE-Net) for reliability learning and interpretable decision-making under multi-modality medical image segmentation. Specifically, the CDE-Net first models the semantic evidence by uncertainty measurement using the proposed evidential decision-making module. Then, it leverages the contextual discounted fusion layer to learn the reliability provided by each modality. Finally, a multi-level loss function is deployed for the optimization of evidence modeling and reliability learning. Moreover, this study elaborates on the framework interpretability by discussing the consistency between pixel attribution maps and the learned reliability coefficients. Extensive experiments are conducted on both multi-modality brain and liver datasets. The CDE-Net gains high performance with an average Dice score of 0.914 for brain tumor segmentation and 0.913 for liver tumor segmentation, which proves CDE-Net has great potential to facilitate the interpretation of artificial intelligence-based multi-modality medical image fusion.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"116 ","pages":"Article 102422"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence modeling for reliability learning and interpretable decision-making under multi-modality medical image segmentation\",\"authors\":\"Jianfeng Zhao ,&nbsp;Shuo Li\",\"doi\":\"10.1016/j.compmedimag.2024.102422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reliability learning and interpretable decision-making are crucial for multi-modality medical image segmentation. Although many works have attempted multi-modality medical image segmentation, they rarely explore how much reliability is provided by each modality for segmentation. Moreover, the existing approach of decision-making such as the <span><math><mrow><mi>s</mi><mi>o</mi><mi>f</mi><mi>t</mi><mi>m</mi><mi>a</mi><mi>x</mi></mrow></math></span> function lacks the interpretability for multi-modality fusion. In this study, we proposed a novel approach named contextual discounted evidential network (CDE-Net) for reliability learning and interpretable decision-making under multi-modality medical image segmentation. Specifically, the CDE-Net first models the semantic evidence by uncertainty measurement using the proposed evidential decision-making module. Then, it leverages the contextual discounted fusion layer to learn the reliability provided by each modality. Finally, a multi-level loss function is deployed for the optimization of evidence modeling and reliability learning. Moreover, this study elaborates on the framework interpretability by discussing the consistency between pixel attribution maps and the learned reliability coefficients. Extensive experiments are conducted on both multi-modality brain and liver datasets. The CDE-Net gains high performance with an average Dice score of 0.914 for brain tumor segmentation and 0.913 for liver tumor segmentation, which proves CDE-Net has great potential to facilitate the interpretation of artificial intelligence-based multi-modality medical image fusion.</p></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"116 \",\"pages\":\"Article 102422\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124000995\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000995","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

可靠性学习和可解释的决策对于多模态医学图像分割至关重要。虽然许多研究都尝试过多模态医学影像分割,但很少探讨每种模态为分割提供了多少可靠性。此外,现有的决策方法(如 softmax 函数)缺乏多模态融合的可解释性。在这项研究中,我们提出了一种名为 "上下文折扣证据网络(CDE-Net)"的新方法,用于多模态医学图像分割下的可靠性学习和可解释性决策。具体来说,CDE-Net 首先利用所提出的证据决策模块,通过不确定性测量建立语义证据模型。然后,它利用上下文折扣融合层来学习每种模态提供的可靠性。最后,采用多级损失函数对证据建模和可靠性学习进行优化。此外,本研究还通过讨论像素归因图与学习到的可靠性系数之间的一致性,详细阐述了框架的可解释性。在多模态大脑和肝脏数据集上进行了广泛的实验。CDE-Net 在脑肿瘤分割和肝脏肿瘤分割中分别获得了 0.914 和 0.913 的平均 Dice 分数,这证明 CDE-Net 在促进基于人工智能的多模态医学影像融合的解释方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evidence modeling for reliability learning and interpretable decision-making under multi-modality medical image segmentation

Reliability learning and interpretable decision-making are crucial for multi-modality medical image segmentation. Although many works have attempted multi-modality medical image segmentation, they rarely explore how much reliability is provided by each modality for segmentation. Moreover, the existing approach of decision-making such as the softmax function lacks the interpretability for multi-modality fusion. In this study, we proposed a novel approach named contextual discounted evidential network (CDE-Net) for reliability learning and interpretable decision-making under multi-modality medical image segmentation. Specifically, the CDE-Net first models the semantic evidence by uncertainty measurement using the proposed evidential decision-making module. Then, it leverages the contextual discounted fusion layer to learn the reliability provided by each modality. Finally, a multi-level loss function is deployed for the optimization of evidence modeling and reliability learning. Moreover, this study elaborates on the framework interpretability by discussing the consistency between pixel attribution maps and the learned reliability coefficients. Extensive experiments are conducted on both multi-modality brain and liver datasets. The CDE-Net gains high performance with an average Dice score of 0.914 for brain tumor segmentation and 0.913 for liver tumor segmentation, which proves CDE-Net has great potential to facilitate the interpretation of artificial intelligence-based multi-modality medical image fusion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信