Montana Kay Lara, Apurva S. Chitre, Denghui Chen, Benjamin B. Johnson, Khai-Minh Nguyen, Katarina A. Cohen, Sakina A. Muckadam, Bonnie Lin, Shae Ziegler, Angela Beeson, Thiago M. Sanches, Leah C. Solberg Woods, Oksana Polesskaya, Abraham A. Palmer, Suzanne H. Mitchell
{"title":"异质种群大鼠延迟折现的全基因组关联研究","authors":"Montana Kay Lara, Apurva S. Chitre, Denghui Chen, Benjamin B. Johnson, Khai-Minh Nguyen, Katarina A. Cohen, Sakina A. Muckadam, Bonnie Lin, Shae Ziegler, Angela Beeson, Thiago M. Sanches, Leah C. Solberg Woods, Oksana Polesskaya, Abraham A. Palmer, Suzanne H. Mitchell","doi":"10.1111/gbb.12909","DOIUrl":null,"url":null,"abstract":"<p>Delay discounting refers to the behavioral tendency to devalue rewards as a function of their delay in receipt. Heightened delay discounting has been associated with substance use disorders and multiple co-occurring psychopathologies. Human and animal genetic studies have established that delay discounting is heritable, but only a few associated genes have been identified. We aimed to identify novel genetic loci associated with delay discounting through a genome-wide association study (GWAS) using Heterogeneous Stock (HS) rats, a genetically diverse outbred population derived from eight inbred founder strains. We assessed delay discounting in 650 male and female HS rats using an adjusting amount procedure in which rats chose between smaller immediate sucrose rewards or a larger reward at various delays. Preference switch points were calculated and both exponential and hyperbolic functions were fitted to these indifference points. Area under the curve (AUC) and the discounting parameter <i>k</i> of both functions were used as delay discounting measures. GWAS for AUC, exponential <i>k</i>, and one indifference point identified significant loci on chromosomes 20 and 14. The gene <i>Slc35f1</i>, which encodes a member of the solute carrier family, was the sole gene within the chromosome 20 locus. That locus also contained an eQTL for <i>Slc35f1</i>, suggesting that heritable differences in the expression might be responsible for the association with behavior. <i>Adgrl3</i>, which encodes a latrophilin subfamily G-protein coupled receptor, was the sole gene within the chromosome 14 locus. These findings implicate novel genes in delay discounting and highlight the need for further exploration.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310854/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-wide association study of delay discounting in Heterogeneous Stock rats\",\"authors\":\"Montana Kay Lara, Apurva S. Chitre, Denghui Chen, Benjamin B. Johnson, Khai-Minh Nguyen, Katarina A. Cohen, Sakina A. Muckadam, Bonnie Lin, Shae Ziegler, Angela Beeson, Thiago M. Sanches, Leah C. Solberg Woods, Oksana Polesskaya, Abraham A. Palmer, Suzanne H. Mitchell\",\"doi\":\"10.1111/gbb.12909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Delay discounting refers to the behavioral tendency to devalue rewards as a function of their delay in receipt. Heightened delay discounting has been associated with substance use disorders and multiple co-occurring psychopathologies. Human and animal genetic studies have established that delay discounting is heritable, but only a few associated genes have been identified. We aimed to identify novel genetic loci associated with delay discounting through a genome-wide association study (GWAS) using Heterogeneous Stock (HS) rats, a genetically diverse outbred population derived from eight inbred founder strains. We assessed delay discounting in 650 male and female HS rats using an adjusting amount procedure in which rats chose between smaller immediate sucrose rewards or a larger reward at various delays. Preference switch points were calculated and both exponential and hyperbolic functions were fitted to these indifference points. Area under the curve (AUC) and the discounting parameter <i>k</i> of both functions were used as delay discounting measures. GWAS for AUC, exponential <i>k</i>, and one indifference point identified significant loci on chromosomes 20 and 14. The gene <i>Slc35f1</i>, which encodes a member of the solute carrier family, was the sole gene within the chromosome 20 locus. That locus also contained an eQTL for <i>Slc35f1</i>, suggesting that heritable differences in the expression might be responsible for the association with behavior. <i>Adgrl3</i>, which encodes a latrophilin subfamily G-protein coupled receptor, was the sole gene within the chromosome 14 locus. These findings implicate novel genes in delay discounting and highlight the need for further exploration.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310854/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbb.12909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbb.12909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
延迟折现指的是一种行为倾向,即随着获得奖励的延迟而贬低奖励的价值。延迟折现的增加与药物使用障碍和多种并发精神病症有关。人类和动物遗传学研究证实,延迟折现是可遗传的,但目前只发现了几个相关基因。我们的目的是通过一项全基因组关联研究(GWAS),利用异质种群(HS)大鼠(一种由八个近交创始品系衍生而来的遗传多样性外源种群)来鉴定与延迟折现相关的新基因位点。我们使用调整量程序评估了 650 只雄性 HS 大鼠和雌性 HS 大鼠的延迟折扣,在该程序中,大鼠可以在较小的即时蔗糖奖励或较大的奖励之间选择不同的延迟。计算偏好转换点,并用指数函数和双曲线函数拟合这些偏好点。这两个函数的曲线下面积(AUC)和折现参数 k 被用作延迟折现的测量指标。针对 AUC、指数 k 和一个冷漠点的基因组学分析确定了 20 号和 14 号染色体上的重要基因位点。编码溶质载体家族成员的 Slc35f1 基因是 20 号染色体位点上的唯一基因。该基因座还包含一个Slc35f1的eQTL,表明表达的遗传差异可能是导致行为关联的原因。编码latrophilin亚家族G蛋白偶联受体的Adgrl3是14号染色体位点上的唯一基因。这些发现揭示了延迟折现中的新基因,并强调了进一步探索的必要性。
Genome-wide association study of delay discounting in Heterogeneous Stock rats
Delay discounting refers to the behavioral tendency to devalue rewards as a function of their delay in receipt. Heightened delay discounting has been associated with substance use disorders and multiple co-occurring psychopathologies. Human and animal genetic studies have established that delay discounting is heritable, but only a few associated genes have been identified. We aimed to identify novel genetic loci associated with delay discounting through a genome-wide association study (GWAS) using Heterogeneous Stock (HS) rats, a genetically diverse outbred population derived from eight inbred founder strains. We assessed delay discounting in 650 male and female HS rats using an adjusting amount procedure in which rats chose between smaller immediate sucrose rewards or a larger reward at various delays. Preference switch points were calculated and both exponential and hyperbolic functions were fitted to these indifference points. Area under the curve (AUC) and the discounting parameter k of both functions were used as delay discounting measures. GWAS for AUC, exponential k, and one indifference point identified significant loci on chromosomes 20 and 14. The gene Slc35f1, which encodes a member of the solute carrier family, was the sole gene within the chromosome 20 locus. That locus also contained an eQTL for Slc35f1, suggesting that heritable differences in the expression might be responsible for the association with behavior. Adgrl3, which encodes a latrophilin subfamily G-protein coupled receptor, was the sole gene within the chromosome 14 locus. These findings implicate novel genes in delay discounting and highlight the need for further exploration.