{"title":"利用多模态成像中的先验知识对胶质母细胞瘤自动分割进行深度学习的多中心研究。","authors":"Suqing Tian, Yinglong Liu, Xinhui Mao, Xin Xu, Shumeng He, Lecheng Jia, Wei Zhang, Peng Peng, Junjie Wang","doi":"10.1111/cas.16304","DOIUrl":null,"url":null,"abstract":"<p>A precise radiotherapy plan is crucial to ensure accurate segmentation of glioblastomas (GBMs) for radiation therapy. However, the traditional manual segmentation process is labor-intensive and heavily reliant on the experience of radiation oncologists. In this retrospective study, a novel auto-segmentation method is proposed to address these problems. To assess the method's applicability across diverse scenarios, we conducted its development and evaluation using a cohort of 148 eligible patients drawn from four multicenter datasets and retrospective data collection including noncontrast CT, multisequence MRI scans, and corresponding medical records. All patients were diagnosed with histologically confirmed high-grade glioma (HGG). A deep learning-based method (PKMI-Net) for automatically segmenting gross tumor volume (GTV) and clinical target volumes (CTV1 and CTV2) of GBMs was proposed by leveraging prior knowledge from multimodal imaging. The proposed PKMI-Net demonstrated high accuracy in segmenting, respectively, GTV, CTV1, and CTV2 in an 11-patient test set, achieving Dice similarity coefficients (DSC) of 0.94, 0.95, and 0.92; 95% Hausdorff distances (HD95) of 2.07, 1.18, and 3.95 mm; average surface distances (ASD) of 0.69, 0.39, and 1.17 mm; and relative volume differences (RVD) of 5.50%, 9.68%, and 3.97%. Moreover, the vast majority of GTV, CTV1, and CTV2 produced by PKMI-Net are clinically acceptable and require no revision for clinical practice. In our multicenter evaluation, the PKMI-Net exhibited consistent and robust generalizability across the various datasets, demonstrating its effectiveness in automatically segmenting GBMs. The proposed method using prior knowledge in multimodal imaging can improve the contouring accuracy of GBMs, which holds the potential to improve the quality and efficiency of GBMs' radiotherapy.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"115 10","pages":"3415-3425"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447882/pdf/","citationCount":"0","resultStr":"{\"title\":\"A multicenter study on deep learning for glioblastoma auto-segmentation with prior knowledge in multimodal imaging\",\"authors\":\"Suqing Tian, Yinglong Liu, Xinhui Mao, Xin Xu, Shumeng He, Lecheng Jia, Wei Zhang, Peng Peng, Junjie Wang\",\"doi\":\"10.1111/cas.16304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A precise radiotherapy plan is crucial to ensure accurate segmentation of glioblastomas (GBMs) for radiation therapy. However, the traditional manual segmentation process is labor-intensive and heavily reliant on the experience of radiation oncologists. In this retrospective study, a novel auto-segmentation method is proposed to address these problems. To assess the method's applicability across diverse scenarios, we conducted its development and evaluation using a cohort of 148 eligible patients drawn from four multicenter datasets and retrospective data collection including noncontrast CT, multisequence MRI scans, and corresponding medical records. All patients were diagnosed with histologically confirmed high-grade glioma (HGG). A deep learning-based method (PKMI-Net) for automatically segmenting gross tumor volume (GTV) and clinical target volumes (CTV1 and CTV2) of GBMs was proposed by leveraging prior knowledge from multimodal imaging. The proposed PKMI-Net demonstrated high accuracy in segmenting, respectively, GTV, CTV1, and CTV2 in an 11-patient test set, achieving Dice similarity coefficients (DSC) of 0.94, 0.95, and 0.92; 95% Hausdorff distances (HD95) of 2.07, 1.18, and 3.95 mm; average surface distances (ASD) of 0.69, 0.39, and 1.17 mm; and relative volume differences (RVD) of 5.50%, 9.68%, and 3.97%. Moreover, the vast majority of GTV, CTV1, and CTV2 produced by PKMI-Net are clinically acceptable and require no revision for clinical practice. In our multicenter evaluation, the PKMI-Net exhibited consistent and robust generalizability across the various datasets, demonstrating its effectiveness in automatically segmenting GBMs. The proposed method using prior knowledge in multimodal imaging can improve the contouring accuracy of GBMs, which holds the potential to improve the quality and efficiency of GBMs' radiotherapy.</p>\",\"PeriodicalId\":9580,\"journal\":{\"name\":\"Cancer Science\",\"volume\":\"115 10\",\"pages\":\"3415-3425\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447882/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cas.16304\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.16304","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
A multicenter study on deep learning for glioblastoma auto-segmentation with prior knowledge in multimodal imaging
A precise radiotherapy plan is crucial to ensure accurate segmentation of glioblastomas (GBMs) for radiation therapy. However, the traditional manual segmentation process is labor-intensive and heavily reliant on the experience of radiation oncologists. In this retrospective study, a novel auto-segmentation method is proposed to address these problems. To assess the method's applicability across diverse scenarios, we conducted its development and evaluation using a cohort of 148 eligible patients drawn from four multicenter datasets and retrospective data collection including noncontrast CT, multisequence MRI scans, and corresponding medical records. All patients were diagnosed with histologically confirmed high-grade glioma (HGG). A deep learning-based method (PKMI-Net) for automatically segmenting gross tumor volume (GTV) and clinical target volumes (CTV1 and CTV2) of GBMs was proposed by leveraging prior knowledge from multimodal imaging. The proposed PKMI-Net demonstrated high accuracy in segmenting, respectively, GTV, CTV1, and CTV2 in an 11-patient test set, achieving Dice similarity coefficients (DSC) of 0.94, 0.95, and 0.92; 95% Hausdorff distances (HD95) of 2.07, 1.18, and 3.95 mm; average surface distances (ASD) of 0.69, 0.39, and 1.17 mm; and relative volume differences (RVD) of 5.50%, 9.68%, and 3.97%. Moreover, the vast majority of GTV, CTV1, and CTV2 produced by PKMI-Net are clinically acceptable and require no revision for clinical practice. In our multicenter evaluation, the PKMI-Net exhibited consistent and robust generalizability across the various datasets, demonstrating its effectiveness in automatically segmenting GBMs. The proposed method using prior knowledge in multimodal imaging can improve the contouring accuracy of GBMs, which holds the potential to improve the quality and efficiency of GBMs' radiotherapy.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.