Michele Gaeta, Karol Galletta, Marco Cavallaro, Enricomaria Mormina, Maria Teresa Cannizzaro, Ludovica Rosa Maria Lanzafame, Tommaso D'Angelo, Alfredo Blandino, Sergio Lucio Vinci, Francesca Granata
{"title":"T1弛豫:磁共振成像的化学物理基础和临床应用。","authors":"Michele Gaeta, Karol Galletta, Marco Cavallaro, Enricomaria Mormina, Maria Teresa Cannizzaro, Ludovica Rosa Maria Lanzafame, Tommaso D'Angelo, Alfredo Blandino, Sergio Lucio Vinci, Francesca Granata","doi":"10.1186/s13244-024-01744-2","DOIUrl":null,"url":null,"abstract":"<p><p>A knowledge of the complex phenomena that regulate T1 signal on Magnetic Resonance Imaging is essential in clinical practice for a more effective characterization of pathological processes. The authors review the physical basis of T1 Relaxation Time and the fundamental aspects of physics and chemistry that can influence this parameter. The main substances (water, fat, macromolecules, methemoglobin, melanin, Gadolinium, calcium) that influence T1 and the different MRI acquisition techniques that can be applied to enhance their presence in diagnostic images are then evaluated. An extensive case illustration of the different phenomena and techniques in the areas of CNS, abdomino-pelvic, and osteoarticular pathology is also proposed. CRITICAL RELEVANCE STATEMENT: T1 relaxation time is strongly influenced by numerous factors related to tissue characteristics and the presence in the context of the lesions of some specific substances. An examination of these phenomena with extensive MRI exemplification is reported. KEY POINTS: The purpose of the paper is to illustrate the chemical-physical basis of T1 Relaxation Time. MRI methods in accordance with the various clinical indications are listed. Several examples of clinical application in abdominopelvic and CNS pathology are reported.</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"15 1","pages":"200"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315875/pdf/","citationCount":"0","resultStr":"{\"title\":\"T1 relaxation: Chemo-physical fundamentals of magnetic resonance imaging and clinical applications.\",\"authors\":\"Michele Gaeta, Karol Galletta, Marco Cavallaro, Enricomaria Mormina, Maria Teresa Cannizzaro, Ludovica Rosa Maria Lanzafame, Tommaso D'Angelo, Alfredo Blandino, Sergio Lucio Vinci, Francesca Granata\",\"doi\":\"10.1186/s13244-024-01744-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A knowledge of the complex phenomena that regulate T1 signal on Magnetic Resonance Imaging is essential in clinical practice for a more effective characterization of pathological processes. The authors review the physical basis of T1 Relaxation Time and the fundamental aspects of physics and chemistry that can influence this parameter. The main substances (water, fat, macromolecules, methemoglobin, melanin, Gadolinium, calcium) that influence T1 and the different MRI acquisition techniques that can be applied to enhance their presence in diagnostic images are then evaluated. An extensive case illustration of the different phenomena and techniques in the areas of CNS, abdomino-pelvic, and osteoarticular pathology is also proposed. CRITICAL RELEVANCE STATEMENT: T1 relaxation time is strongly influenced by numerous factors related to tissue characteristics and the presence in the context of the lesions of some specific substances. An examination of these phenomena with extensive MRI exemplification is reported. KEY POINTS: The purpose of the paper is to illustrate the chemical-physical basis of T1 Relaxation Time. MRI methods in accordance with the various clinical indications are listed. Several examples of clinical application in abdominopelvic and CNS pathology are reported.</p>\",\"PeriodicalId\":13639,\"journal\":{\"name\":\"Insights into Imaging\",\"volume\":\"15 1\",\"pages\":\"200\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315875/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insights into Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13244-024-01744-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-024-01744-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
T1 relaxation: Chemo-physical fundamentals of magnetic resonance imaging and clinical applications.
A knowledge of the complex phenomena that regulate T1 signal on Magnetic Resonance Imaging is essential in clinical practice for a more effective characterization of pathological processes. The authors review the physical basis of T1 Relaxation Time and the fundamental aspects of physics and chemistry that can influence this parameter. The main substances (water, fat, macromolecules, methemoglobin, melanin, Gadolinium, calcium) that influence T1 and the different MRI acquisition techniques that can be applied to enhance their presence in diagnostic images are then evaluated. An extensive case illustration of the different phenomena and techniques in the areas of CNS, abdomino-pelvic, and osteoarticular pathology is also proposed. CRITICAL RELEVANCE STATEMENT: T1 relaxation time is strongly influenced by numerous factors related to tissue characteristics and the presence in the context of the lesions of some specific substances. An examination of these phenomena with extensive MRI exemplification is reported. KEY POINTS: The purpose of the paper is to illustrate the chemical-physical basis of T1 Relaxation Time. MRI methods in accordance with the various clinical indications are listed. Several examples of clinical application in abdominopelvic and CNS pathology are reported.
期刊介绍:
Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere!
I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe.
Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy.
A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field.
I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly.
The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members.
The journal went open access in 2012, which means that all articles published since then are freely available online.