{"title":"海量分类数据集的高效系统发生树推断:利用服务器的力量分析 100 万个分类群。","authors":"César Piñeiro, Juan C Pichel","doi":"10.1093/gigascience/giae055","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Phylogenies play a crucial role in biological research. Unfortunately, the search for the optimal phylogenetic tree incurs significant computational costs, and most of the existing state-of-the-art tools cannot deal with extremely large datasets in reasonable times.</p><p><strong>Results: </strong>In this work, we introduce the new VeryFastTree code (version 4.0), which is able to construct a tree on 1 server using single-precision arithmetic from a massive 1 million alignment dataset in only 36 hours, which is 3 times and 3.2 times faster than its previous version and FastTree-2, respectively. This new version further boosts performance by parallelizing all tree traversal operations during the tree construction process, including subtree pruning and regrafting moves. Additionally, it introduces significant new features such as support for new and compressed file formats, enhanced compatibility across a broader range of operating systems, and the integration of disk computing functionality. The latter feature is particularly advantageous for users without access to high-end servers, as it allows them to manage very large datasets, albeit with an increase in computing time.</p><p><strong>Conclusions: </strong>Experimental results establish VeryFastTree as the fastest tool in the state-of-the-art for maximum likelihood phylogeny estimation. It is publicly available at https://github.com/citiususc/veryfasttree. In addition, VeryFastTree is included as a package in Bioconda, MacPorts, and all Debian-based Linux distributions.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":null,"pages":null},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308190/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient phylogenetic tree inference for massive taxonomic datasets: harnessing the power of a server to analyze 1 million taxa.\",\"authors\":\"César Piñeiro, Juan C Pichel\",\"doi\":\"10.1093/gigascience/giae055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Phylogenies play a crucial role in biological research. Unfortunately, the search for the optimal phylogenetic tree incurs significant computational costs, and most of the existing state-of-the-art tools cannot deal with extremely large datasets in reasonable times.</p><p><strong>Results: </strong>In this work, we introduce the new VeryFastTree code (version 4.0), which is able to construct a tree on 1 server using single-precision arithmetic from a massive 1 million alignment dataset in only 36 hours, which is 3 times and 3.2 times faster than its previous version and FastTree-2, respectively. This new version further boosts performance by parallelizing all tree traversal operations during the tree construction process, including subtree pruning and regrafting moves. Additionally, it introduces significant new features such as support for new and compressed file formats, enhanced compatibility across a broader range of operating systems, and the integration of disk computing functionality. The latter feature is particularly advantageous for users without access to high-end servers, as it allows them to manage very large datasets, albeit with an increase in computing time.</p><p><strong>Conclusions: </strong>Experimental results establish VeryFastTree as the fastest tool in the state-of-the-art for maximum likelihood phylogeny estimation. It is publicly available at https://github.com/citiususc/veryfasttree. In addition, VeryFastTree is included as a package in Bioconda, MacPorts, and all Debian-based Linux distributions.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308190/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giae055\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae055","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Efficient phylogenetic tree inference for massive taxonomic datasets: harnessing the power of a server to analyze 1 million taxa.
Background: Phylogenies play a crucial role in biological research. Unfortunately, the search for the optimal phylogenetic tree incurs significant computational costs, and most of the existing state-of-the-art tools cannot deal with extremely large datasets in reasonable times.
Results: In this work, we introduce the new VeryFastTree code (version 4.0), which is able to construct a tree on 1 server using single-precision arithmetic from a massive 1 million alignment dataset in only 36 hours, which is 3 times and 3.2 times faster than its previous version and FastTree-2, respectively. This new version further boosts performance by parallelizing all tree traversal operations during the tree construction process, including subtree pruning and regrafting moves. Additionally, it introduces significant new features such as support for new and compressed file formats, enhanced compatibility across a broader range of operating systems, and the integration of disk computing functionality. The latter feature is particularly advantageous for users without access to high-end servers, as it allows them to manage very large datasets, albeit with an increase in computing time.
Conclusions: Experimental results establish VeryFastTree as the fastest tool in the state-of-the-art for maximum likelihood phylogeny estimation. It is publicly available at https://github.com/citiususc/veryfasttree. In addition, VeryFastTree is included as a package in Bioconda, MacPorts, and all Debian-based Linux distributions.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.