GSPT1 作为胶质母细胞瘤治疗新靶点的潜力。

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Takashi Sasayama, Takeshi Hamada, Kazuhiro Tanaka, Hiroaki Nagashima, Shunsuke Yamanishi, Takehiko Ueyama
{"title":"GSPT1 作为胶质母细胞瘤治疗新靶点的潜力。","authors":"Takashi Sasayama, Takeshi Hamada, Kazuhiro Tanaka, Hiroaki Nagashima, Shunsuke Yamanishi, Takehiko Ueyama","doi":"10.1038/s41419-024-06967-1","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma is the most common malignant brain tumor in adults, the survival rate of which has not significantly improved over the past three decades. Therefore, there is an urgent need to develop novel treatment modalities. We previously reported that G1 to S phase transition 1 (GSPT1) depletion induces delayed cell cycle in primary astrocytes. Herein, we examined the potential of GSPT1 as a novel target for glioblastoma therapy. CC-885, a cereblon modulator that degrades GSPT1 by bridging GSPT1 to the CRL4 E3 ubiquitin ligase complex, was administered to nude mice with transplanted brain tumors of U87 glioblastoma cells. The survival period was significantly longer in CC-885 treated mice than in control mice. Furthermore, we generated GSPT1-knockout (KO) U87 cells and GSPT1-KO U87 cells with stable overexpression of FLAG-tagged GSPT1 (Rescued GSPT1-KO). Mice with transplanted GSPT1-KO U87 cells and Rescued GSPT1-KO U87 cells showed significantly longer and similar survival periods, respectively, as those with wild-type (WT) U87 cells. GSPT1-KO U87 cells showed enhanced apoptosis, detected by cleaved PARP1, compared to WT U87 cells. Brain tumors with transplantation of GSPT1-KO U87 cells also showed enhanced apoptosis compared to those with transplantation of WT and Rescued GSPT1-KO U87 cells. GSPT1 expression was confirmed in patients with glioblastoma. However, the clinical study using 87 glioblastoma samples showed that GSPT1 mRNA levels were not associated with overall survival. Taken together, we propose that GSPT1 is an essential protein for glioblastoma growth, but not its malignant characteristics, and that GSPT1 is a potential target for developing glioblastoma therapeutics.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310507/pdf/","citationCount":"0","resultStr":"{\"title\":\"Potential of GSPT1 as a novel target for glioblastoma therapy.\",\"authors\":\"Takashi Sasayama, Takeshi Hamada, Kazuhiro Tanaka, Hiroaki Nagashima, Shunsuke Yamanishi, Takehiko Ueyama\",\"doi\":\"10.1038/s41419-024-06967-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma is the most common malignant brain tumor in adults, the survival rate of which has not significantly improved over the past three decades. Therefore, there is an urgent need to develop novel treatment modalities. We previously reported that G1 to S phase transition 1 (GSPT1) depletion induces delayed cell cycle in primary astrocytes. Herein, we examined the potential of GSPT1 as a novel target for glioblastoma therapy. CC-885, a cereblon modulator that degrades GSPT1 by bridging GSPT1 to the CRL4 E3 ubiquitin ligase complex, was administered to nude mice with transplanted brain tumors of U87 glioblastoma cells. The survival period was significantly longer in CC-885 treated mice than in control mice. Furthermore, we generated GSPT1-knockout (KO) U87 cells and GSPT1-KO U87 cells with stable overexpression of FLAG-tagged GSPT1 (Rescued GSPT1-KO). Mice with transplanted GSPT1-KO U87 cells and Rescued GSPT1-KO U87 cells showed significantly longer and similar survival periods, respectively, as those with wild-type (WT) U87 cells. GSPT1-KO U87 cells showed enhanced apoptosis, detected by cleaved PARP1, compared to WT U87 cells. Brain tumors with transplantation of GSPT1-KO U87 cells also showed enhanced apoptosis compared to those with transplantation of WT and Rescued GSPT1-KO U87 cells. GSPT1 expression was confirmed in patients with glioblastoma. However, the clinical study using 87 glioblastoma samples showed that GSPT1 mRNA levels were not associated with overall survival. Taken together, we propose that GSPT1 is an essential protein for glioblastoma growth, but not its malignant characteristics, and that GSPT1 is a potential target for developing glioblastoma therapeutics.</p>\",\"PeriodicalId\":9734,\"journal\":{\"name\":\"Cell Death & Disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310507/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death & Disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41419-024-06967-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-06967-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胶质母细胞瘤是成人中最常见的恶性脑肿瘤,其存活率在过去三十年中没有明显改善。因此,迫切需要开发新的治疗模式。我们以前曾报道过,G1 到 S 期转变 1(GSPT1)耗竭会诱导原发性星形胶质细胞的细胞周期延迟。在此,我们研究了GSPT1作为胶质母细胞瘤治疗新靶点的潜力。CC-885是一种脑龙调节剂,它通过将GSPT1与CRL4 E3泛素连接酶复合物连接来降解GSPT1。接受CC-885治疗的小鼠的存活期明显长于对照组小鼠。此外,我们还生成了GSPT1基因敲除(KO)的U87细胞和稳定过表达FLAG标记的GSPT1的GSPT1-KO U87细胞(Rescued GSPT1-KO)。移植了GSPT1-KO U87细胞和Rescued GSPT1-KO U87细胞的小鼠存活期明显更长,与移植了野生型(WT)U87细胞的小鼠存活期相似。与WT U87细胞相比,GSPT1-KO U87细胞通过PARP1裂解检测到的细胞凋亡增强。移植了 GSPT1-KO U87 细胞的脑肿瘤与移植了 WT 和 Rescued GSPT1-KO U87 细胞的脑肿瘤相比,也显示出更强的细胞凋亡能力。在胶质母细胞瘤患者中证实了 GSPT1 的表达。然而,使用 87 例胶质母细胞瘤样本进行的临床研究显示,GSPT1 mRNA 水平与总生存率无关。综上所述,我们认为 GSPT1 是胶质母细胞瘤生长的必需蛋白,但不是其恶性特征的必需蛋白,GSPT1 是开发胶质母细胞瘤疗法的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Potential of GSPT1 as a novel target for glioblastoma therapy.

Potential of GSPT1 as a novel target for glioblastoma therapy.

Glioblastoma is the most common malignant brain tumor in adults, the survival rate of which has not significantly improved over the past three decades. Therefore, there is an urgent need to develop novel treatment modalities. We previously reported that G1 to S phase transition 1 (GSPT1) depletion induces delayed cell cycle in primary astrocytes. Herein, we examined the potential of GSPT1 as a novel target for glioblastoma therapy. CC-885, a cereblon modulator that degrades GSPT1 by bridging GSPT1 to the CRL4 E3 ubiquitin ligase complex, was administered to nude mice with transplanted brain tumors of U87 glioblastoma cells. The survival period was significantly longer in CC-885 treated mice than in control mice. Furthermore, we generated GSPT1-knockout (KO) U87 cells and GSPT1-KO U87 cells with stable overexpression of FLAG-tagged GSPT1 (Rescued GSPT1-KO). Mice with transplanted GSPT1-KO U87 cells and Rescued GSPT1-KO U87 cells showed significantly longer and similar survival periods, respectively, as those with wild-type (WT) U87 cells. GSPT1-KO U87 cells showed enhanced apoptosis, detected by cleaved PARP1, compared to WT U87 cells. Brain tumors with transplantation of GSPT1-KO U87 cells also showed enhanced apoptosis compared to those with transplantation of WT and Rescued GSPT1-KO U87 cells. GSPT1 expression was confirmed in patients with glioblastoma. However, the clinical study using 87 glioblastoma samples showed that GSPT1 mRNA levels were not associated with overall survival. Taken together, we propose that GSPT1 is an essential protein for glioblastoma growth, but not its malignant characteristics, and that GSPT1 is a potential target for developing glioblastoma therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信