CAPE:利用混沌-注意力网的深度学习框架,用于促进者进化。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Ruohan Ren, Hongyu Yu, Jiahao Teng, Sihui Mao, Zixuan Bian, Yangtianze Tao, Stephen S-T Yau
{"title":"CAPE:利用混沌-注意力网的深度学习框架,用于促进者进化。","authors":"Ruohan Ren, Hongyu Yu, Jiahao Teng, Sihui Mao, Zixuan Bian, Yangtianze Tao, Stephen S-T Yau","doi":"10.1093/bib/bbae398","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting the strength of promoters and guiding their directed evolution is a crucial task in synthetic biology. This approach significantly reduces the experimental costs in conventional promoter engineering. Previous studies employing machine learning or deep learning methods have shown some success in this task, but their outcomes were not satisfactory enough, primarily due to the neglect of evolutionary information. In this paper, we introduce the Chaos-Attention net for Promoter Evolution (CAPE) to address the limitations of existing methods. We comprehensively extract evolutionary information within promoters using merged chaos game representation and process the overall information with modified DenseNet and Transformer structures. Our model achieves state-of-the-art results on two kinds of distinct tasks related to prokaryotic promoter strength prediction. The incorporation of evolutionary information enhances the model's accuracy, with transfer learning further extending its adaptability. Furthermore, experimental results confirm CAPE's efficacy in simulating in silico directed evolution of promoters, marking a significant advancement in predictive modeling for prokaryotic promoter strength. Our paper also presents a user-friendly website for the practical implementation of in silico directed evolution on promoters. The source code implemented in this study and the instructions on accessing the website can be found in our GitHub repository https://github.com/BobYHY/CAPE.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311715/pdf/","citationCount":"0","resultStr":"{\"title\":\"CAPE: a deep learning framework with Chaos-Attention net for Promoter Evolution.\",\"authors\":\"Ruohan Ren, Hongyu Yu, Jiahao Teng, Sihui Mao, Zixuan Bian, Yangtianze Tao, Stephen S-T Yau\",\"doi\":\"10.1093/bib/bbae398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting the strength of promoters and guiding their directed evolution is a crucial task in synthetic biology. This approach significantly reduces the experimental costs in conventional promoter engineering. Previous studies employing machine learning or deep learning methods have shown some success in this task, but their outcomes were not satisfactory enough, primarily due to the neglect of evolutionary information. In this paper, we introduce the Chaos-Attention net for Promoter Evolution (CAPE) to address the limitations of existing methods. We comprehensively extract evolutionary information within promoters using merged chaos game representation and process the overall information with modified DenseNet and Transformer structures. Our model achieves state-of-the-art results on two kinds of distinct tasks related to prokaryotic promoter strength prediction. The incorporation of evolutionary information enhances the model's accuracy, with transfer learning further extending its adaptability. Furthermore, experimental results confirm CAPE's efficacy in simulating in silico directed evolution of promoters, marking a significant advancement in predictive modeling for prokaryotic promoter strength. Our paper also presents a user-friendly website for the practical implementation of in silico directed evolution on promoters. The source code implemented in this study and the instructions on accessing the website can be found in our GitHub repository https://github.com/BobYHY/CAPE.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311715/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae398\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae398","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

预测启动子的强度并引导其定向进化是合成生物学的一项重要任务。这种方法大大降低了传统启动子工程的实验成本。以往采用机器学习或深度学习方法的研究在这项任务中取得了一些成功,但其结果还不够令人满意,主要原因是忽略了进化信息。本文针对现有方法的局限性,引入了启动子进化混沌注意力网(CAPE)。我们使用合并的混沌博弈表示法全面提取启动子中的进化信息,并使用改进的 DenseNet 和 Transformer 结构处理整体信息。我们的模型在与原核生物启动子强度预测相关的两种不同任务中取得了最先进的结果。进化信息的融入提高了模型的准确性,而迁移学习则进一步扩展了模型的适应性。此外,实验结果证实了 CAPE 在模拟启动子硅学定向进化方面的功效,标志着原核生物启动子强度预测建模的重大进展。我们的论文还介绍了一个用户友好型网站,用于实际实现启动子的硅学定向进化。本研究中实现的源代码和访问网站的说明可在我们的 GitHub 存储库 https://github.com/BobYHY/CAPE 中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CAPE: a deep learning framework with Chaos-Attention net for Promoter Evolution.

Predicting the strength of promoters and guiding their directed evolution is a crucial task in synthetic biology. This approach significantly reduces the experimental costs in conventional promoter engineering. Previous studies employing machine learning or deep learning methods have shown some success in this task, but their outcomes were not satisfactory enough, primarily due to the neglect of evolutionary information. In this paper, we introduce the Chaos-Attention net for Promoter Evolution (CAPE) to address the limitations of existing methods. We comprehensively extract evolutionary information within promoters using merged chaos game representation and process the overall information with modified DenseNet and Transformer structures. Our model achieves state-of-the-art results on two kinds of distinct tasks related to prokaryotic promoter strength prediction. The incorporation of evolutionary information enhances the model's accuracy, with transfer learning further extending its adaptability. Furthermore, experimental results confirm CAPE's efficacy in simulating in silico directed evolution of promoters, marking a significant advancement in predictive modeling for prokaryotic promoter strength. Our paper also presents a user-friendly website for the practical implementation of in silico directed evolution on promoters. The source code implemented in this study and the instructions on accessing the website can be found in our GitHub repository https://github.com/BobYHY/CAPE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信