Trong Nhan Pham, Hunter Shirley, Johannes Merkelbach, Kshitij Gurung, Lukáš Palatinus, Glenn P A Yap, Joel Rosenthal
{"title":"二羰基[10,10-二甲基-5,15-双(五氟苯基)二苯乙烯]钌(II):通过 X 射线和电子衍射发现首个四吡咯顺式二羰基钌络合物。","authors":"Trong Nhan Pham, Hunter Shirley, Johannes Merkelbach, Kshitij Gurung, Lukáš Palatinus, Glenn P A Yap, Joel Rosenthal","doi":"10.1107/S2053229624007083","DOIUrl":null,"url":null,"abstract":"<p><p>Dicarbonyl[10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene]ruthenium(II), [Ru(C<sub>33</sub>H<sub>16</sub>F<sub>10</sub>N<sub>4</sub>)(CO)<sub>2</sub>] or Ru(CO)<sub>2</sub>[DMBil1], is the first reported ruthenium(II) cis-dicarbonyl tetrapyrrole complex. The neutral complex sports two carbonyls and an oligotetrapyrrolic biladiene ligand. Notably, the biladiene adopts a coordination geometry that is well distorted from square planar and much more closely approximates a seesaw arrangement. Accordingly, Ru(CO)<sub>2</sub>[DMBil1] is not only the first ruthenium cis-dicarbonyl with a tetrapyrrole ligand, but also the first metal biladiene complex in which the tetrapyrrole does not adopt a (pseudo-)square-planar coordination geometry. Ru(CO)<sub>2</sub>[DMBil1] is weakly luminescent, displaying λ<sub>em</sub> = 552 nm upon excitation at λ<sub>ex</sub> = 500 nm, supports two reversible 1 e<sup>-</sup> reductions at -1.45 and -1.73 V (versus Fc<sup>+</sup>/Fc), and has significant absorption features at 481 and 531 nm, suggesting suitability for photocatalytic and photosensitization applications. While the structure of Ru(CO)<sub>2</sub>[DMBil1] was initially determined by X-ray diffraction, a traditionally acceptable quality structure could not be obtained (despite multiple attempts) because of consistently poor crystal quality. An independent structure obtained from electron diffraction experiments corroborates the structure of this unusual biladiene complex.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371002/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dicarbonyl[10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene]ruthenium(II): discovery of the first ruthenium tetrapyrrole cis-dicarbonyl complex by X-ray and electron diffraction.\",\"authors\":\"Trong Nhan Pham, Hunter Shirley, Johannes Merkelbach, Kshitij Gurung, Lukáš Palatinus, Glenn P A Yap, Joel Rosenthal\",\"doi\":\"10.1107/S2053229624007083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dicarbonyl[10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene]ruthenium(II), [Ru(C<sub>33</sub>H<sub>16</sub>F<sub>10</sub>N<sub>4</sub>)(CO)<sub>2</sub>] or Ru(CO)<sub>2</sub>[DMBil1], is the first reported ruthenium(II) cis-dicarbonyl tetrapyrrole complex. The neutral complex sports two carbonyls and an oligotetrapyrrolic biladiene ligand. Notably, the biladiene adopts a coordination geometry that is well distorted from square planar and much more closely approximates a seesaw arrangement. Accordingly, Ru(CO)<sub>2</sub>[DMBil1] is not only the first ruthenium cis-dicarbonyl with a tetrapyrrole ligand, but also the first metal biladiene complex in which the tetrapyrrole does not adopt a (pseudo-)square-planar coordination geometry. Ru(CO)<sub>2</sub>[DMBil1] is weakly luminescent, displaying λ<sub>em</sub> = 552 nm upon excitation at λ<sub>ex</sub> = 500 nm, supports two reversible 1 e<sup>-</sup> reductions at -1.45 and -1.73 V (versus Fc<sup>+</sup>/Fc), and has significant absorption features at 481 and 531 nm, suggesting suitability for photocatalytic and photosensitization applications. While the structure of Ru(CO)<sub>2</sub>[DMBil1] was initially determined by X-ray diffraction, a traditionally acceptable quality structure could not be obtained (despite multiple attempts) because of consistently poor crystal quality. An independent structure obtained from electron diffraction experiments corroborates the structure of this unusual biladiene complex.</p>\",\"PeriodicalId\":7115,\"journal\":{\"name\":\"Acta Crystallographica Section C Structural Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371002/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section C Structural Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1107/S2053229624007083\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section C Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2053229624007083","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dicarbonyl[10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene]ruthenium(II): discovery of the first ruthenium tetrapyrrole cis-dicarbonyl complex by X-ray and electron diffraction.
Dicarbonyl[10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene]ruthenium(II), [Ru(C33H16F10N4)(CO)2] or Ru(CO)2[DMBil1], is the first reported ruthenium(II) cis-dicarbonyl tetrapyrrole complex. The neutral complex sports two carbonyls and an oligotetrapyrrolic biladiene ligand. Notably, the biladiene adopts a coordination geometry that is well distorted from square planar and much more closely approximates a seesaw arrangement. Accordingly, Ru(CO)2[DMBil1] is not only the first ruthenium cis-dicarbonyl with a tetrapyrrole ligand, but also the first metal biladiene complex in which the tetrapyrrole does not adopt a (pseudo-)square-planar coordination geometry. Ru(CO)2[DMBil1] is weakly luminescent, displaying λem = 552 nm upon excitation at λex = 500 nm, supports two reversible 1 e- reductions at -1.45 and -1.73 V (versus Fc+/Fc), and has significant absorption features at 481 and 531 nm, suggesting suitability for photocatalytic and photosensitization applications. While the structure of Ru(CO)2[DMBil1] was initially determined by X-ray diffraction, a traditionally acceptable quality structure could not be obtained (despite multiple attempts) because of consistently poor crystal quality. An independent structure obtained from electron diffraction experiments corroborates the structure of this unusual biladiene complex.
期刊介绍:
Acta Crystallographica Section C: Structural Chemistry is continuing its transition to a journal that publishes exciting science with structural content, in particular, important results relating to the chemical sciences. Section C is the journal of choice for the rapid publication of articles that highlight interesting research facilitated by the determination, calculation or analysis of structures of any type, other than macromolecular structures. Articles that emphasize the science and the outcomes that were enabled by the study are particularly welcomed. Authors are encouraged to include mainstream science in their papers, thereby producing manuscripts that are substantial scientific well-rounded contributions that appeal to a broad community of readers and increase the profile of the authors.