截断β-葡聚糖酶的新型 C 端结构域可提高其热稳定性和特异性活性。

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Anastasia Klemanska, Kelly Dwyer, Gary Walsh
{"title":"截断β-葡聚糖酶的新型 C 端结构域可提高其热稳定性和特异性活性。","authors":"Anastasia Klemanska,&nbsp;Kelly Dwyer,&nbsp;Gary Walsh","doi":"10.1002/biot.202400245","DOIUrl":null,"url":null,"abstract":"<p>Enzymes that degrade β-glucan play important roles in various industries, including those related to brewing, animal feed, and health care. Csph16A, an endo-β-1,3(4)-glucanase encoded by a gene from the halotolerant, xerotolerant, and radiotrophic black fungus <i>Cladosporium sphaerospermum</i>, was cloned and expressed in <i>Pichia pastoris</i>. Two isoforms (Csph16A.1 and Csph16A.2) are produced, arising from differential glycosylation. The proteins were predicted to contain a catalytic Lam16A domain, along with a C-terminal domain (CTD) of unknown function which exhibits minimal secondary structure. Employing PCR-mediated gene truncation, the CTD of Csph16A was excised to assess its functional impact on the enzyme and determine potential alterations in biotechnologically relevant characteristics. The truncated mutant, Csph16A-ΔC, exhibited significantly enhanced thermal stability at 50°C, with D-values 14.8 and 23.5 times greater than those of Csph16A.1 and Csph16A.2, respectively. Moreover, Csph16A-ΔC demonstrated a 20%–25% increase in halotolerance at 1.25 and 1.5 M NaCl, respectively, compared to the full-length enzymes. Notably, specific activity against cereal β-glucan, lichenan, and curdlan was increased by up to 238%. This study represents the first characterization of a glucanase from the stress-tolerant fungus <i>C. sphaerospermum</i> and the first report of a halotolerant and engineered endo-β-1,3(4)-glucanase. Additionally, it sheds light on a group of endo-β-1,3(4)-glucanases from Antarctic rock-inhabiting black fungi harboring a Lam16A catalytic domain and a novel CTD of unknown function.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202400245","citationCount":"0","resultStr":"{\"title\":\"Truncation of a novel C-terminal domain of a β-glucanase improves its thermal stability and specific activity\",\"authors\":\"Anastasia Klemanska,&nbsp;Kelly Dwyer,&nbsp;Gary Walsh\",\"doi\":\"10.1002/biot.202400245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Enzymes that degrade β-glucan play important roles in various industries, including those related to brewing, animal feed, and health care. Csph16A, an endo-β-1,3(4)-glucanase encoded by a gene from the halotolerant, xerotolerant, and radiotrophic black fungus <i>Cladosporium sphaerospermum</i>, was cloned and expressed in <i>Pichia pastoris</i>. Two isoforms (Csph16A.1 and Csph16A.2) are produced, arising from differential glycosylation. The proteins were predicted to contain a catalytic Lam16A domain, along with a C-terminal domain (CTD) of unknown function which exhibits minimal secondary structure. Employing PCR-mediated gene truncation, the CTD of Csph16A was excised to assess its functional impact on the enzyme and determine potential alterations in biotechnologically relevant characteristics. The truncated mutant, Csph16A-ΔC, exhibited significantly enhanced thermal stability at 50°C, with D-values 14.8 and 23.5 times greater than those of Csph16A.1 and Csph16A.2, respectively. Moreover, Csph16A-ΔC demonstrated a 20%–25% increase in halotolerance at 1.25 and 1.5 M NaCl, respectively, compared to the full-length enzymes. Notably, specific activity against cereal β-glucan, lichenan, and curdlan was increased by up to 238%. This study represents the first characterization of a glucanase from the stress-tolerant fungus <i>C. sphaerospermum</i> and the first report of a halotolerant and engineered endo-β-1,3(4)-glucanase. Additionally, it sheds light on a group of endo-β-1,3(4)-glucanases from Antarctic rock-inhabiting black fungi harboring a Lam16A catalytic domain and a novel CTD of unknown function.</p>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"19 8\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202400245\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400245\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400245","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

降解β-葡聚糖的酶在各行各业都发挥着重要作用,包括与酿造、动物饲料和保健有关的行业。Csph16A是一种内β-1,3(4)-葡聚糖酶,由耐盐、耐旱和辐射黑真菌Cladosporium sphaerospermum的基因编码。由于糖基化程度不同,产生了两种异构体(Csph16A.1 和 Csph16A.2)。据预测,这些蛋白质包含一个催化 Lam16A 结构域,以及一个功能未知的 C 端结构域(CTD),该结构域表现出最小的二级结构。通过 PCR 介导的基因截断,Csph16A 的 CTD 被切除,以评估其对酶的功能影响,并确定生物技术相关特性的潜在改变。截短突变体 Csph16A-ΔC 在 50°C 时的热稳定性明显增强,其 D 值分别是 Csph16A.1 和 Csph16A.2 的 14.8 倍和 23.5 倍。此外,与全长酶相比,Csph16A-ΔC 在 1.25 和 1.5 M NaCl 下的耐盐性分别提高了 20%-25% 。值得注意的是,针对谷物β-葡聚糖、地衣聚糖和姜黄聚糖的特异性活性提高了 238%。这项研究首次表征了来自耐应激真菌 C. sphaerospermum 的葡聚糖酶,也是首次报道耐盐工程内切-β-1,3(4)-葡聚糖酶。此外,该研究还揭示了一组来自南极岩石栖息黑真菌的内-β-1,3(4)-葡聚糖酶,它们含有一个 Lam16A 催化结构域和一个功能未知的新型 CTD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Truncation of a novel C-terminal domain of a β-glucanase improves its thermal stability and specific activity

Truncation of a novel C-terminal domain of a β-glucanase improves its thermal stability and specific activity

Enzymes that degrade β-glucan play important roles in various industries, including those related to brewing, animal feed, and health care. Csph16A, an endo-β-1,3(4)-glucanase encoded by a gene from the halotolerant, xerotolerant, and radiotrophic black fungus Cladosporium sphaerospermum, was cloned and expressed in Pichia pastoris. Two isoforms (Csph16A.1 and Csph16A.2) are produced, arising from differential glycosylation. The proteins were predicted to contain a catalytic Lam16A domain, along with a C-terminal domain (CTD) of unknown function which exhibits minimal secondary structure. Employing PCR-mediated gene truncation, the CTD of Csph16A was excised to assess its functional impact on the enzyme and determine potential alterations in biotechnologically relevant characteristics. The truncated mutant, Csph16A-ΔC, exhibited significantly enhanced thermal stability at 50°C, with D-values 14.8 and 23.5 times greater than those of Csph16A.1 and Csph16A.2, respectively. Moreover, Csph16A-ΔC demonstrated a 20%–25% increase in halotolerance at 1.25 and 1.5 M NaCl, respectively, compared to the full-length enzymes. Notably, specific activity against cereal β-glucan, lichenan, and curdlan was increased by up to 238%. This study represents the first characterization of a glucanase from the stress-tolerant fungus C. sphaerospermum and the first report of a halotolerant and engineered endo-β-1,3(4)-glucanase. Additionally, it sheds light on a group of endo-β-1,3(4)-glucanases from Antarctic rock-inhabiting black fungi harboring a Lam16A catalytic domain and a novel CTD of unknown function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信