{"title":"评估桩支撑路堤设计方法的土工合成材料加固荷载传递平台的机理和性能","authors":"","doi":"10.1016/j.geotexmem.2024.07.009","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates the existing design methods of Geosynthetic-Reinforced Load Transfer Platform for Pile-Supported Embankments (GLTP-PSE) through comprehensive 3D Finite Element (FE) analyses. It scrutinizes the assumed arching mechanisms, methodologies, design criteria (arching height, maximum strain, differential settlement, and T in geosynthetics), and overall performance of these methods. The 3D FE analysis results and measurements from two case studies were compared with six established GLTP-PSE design methods based on the four design criteria. Key findings include the identification of a progressive concentrated ellipsoid as the developed soil arching formation, with arching height dependent on the embankment equivalent height (including embankment and traffic load), pile spacing, maximum strain along the geosynthetics, and the number of geosynthetic layers. The load distribution on geosynthetic reinforcement was observed to align more closely with a non-linear inverse triangle. These insights led to recommendations for updating existing design methods, enhancing the accuracy and reliability of GLTP-PSE designs. The study's outcomes contribute significantly to advancing and refining GLTP-PSE design practices by providing a deeper understanding of soil arching mechanisms and the performance of geosynthetic reinforcements.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the mechanisms and performance of Geosynthetic-Reinforced Load Transfer Platform of pile-supported embankments design methods\",\"authors\":\"\",\"doi\":\"10.1016/j.geotexmem.2024.07.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study evaluates the existing design methods of Geosynthetic-Reinforced Load Transfer Platform for Pile-Supported Embankments (GLTP-PSE) through comprehensive 3D Finite Element (FE) analyses. It scrutinizes the assumed arching mechanisms, methodologies, design criteria (arching height, maximum strain, differential settlement, and T in geosynthetics), and overall performance of these methods. The 3D FE analysis results and measurements from two case studies were compared with six established GLTP-PSE design methods based on the four design criteria. Key findings include the identification of a progressive concentrated ellipsoid as the developed soil arching formation, with arching height dependent on the embankment equivalent height (including embankment and traffic load), pile spacing, maximum strain along the geosynthetics, and the number of geosynthetic layers. The load distribution on geosynthetic reinforcement was observed to align more closely with a non-linear inverse triangle. These insights led to recommendations for updating existing design methods, enhancing the accuracy and reliability of GLTP-PSE designs. The study's outcomes contribute significantly to advancing and refining GLTP-PSE design practices by providing a deeper understanding of soil arching mechanisms and the performance of geosynthetic reinforcements.</p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026611442400075X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026611442400075X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究通过全面的三维有限元(FE)分析,对现有的桩支路堤土工合成材料加固荷载传递平台(GLTP-PSE)设计方法进行了评估。它仔细研究了这些方法的假定起拱机制、方法、设计标准(起拱高度、最大应变、差异沉降和土工合成材料 T)和整体性能。根据四个设计标准,将两个案例研究的三维 FE 分析结果和测量结果与六种既定的 GLTP-PSE 设计方法进行了比较。主要发现包括确定了一个渐进的集中椭球体作为土壤拱起的形成,拱起高度取决于路堤等效高度(包括路堤和交通荷载)、桩距、土工合成材料沿线的最大应变以及土工合成材料层数。据观察,土工合成材料加固体上的荷载分布更接近于非线性反三角。这些见解为更新现有设计方法、提高 GLTP-PSE 设计的准确性和可靠性提出了建议。这项研究的成果加深了人们对土壤起拱机理和土工合成材料加固性能的理解,从而为推进和完善 GLTP-PSE 设计实践做出了重要贡献。
Evaluating the mechanisms and performance of Geosynthetic-Reinforced Load Transfer Platform of pile-supported embankments design methods
This study evaluates the existing design methods of Geosynthetic-Reinforced Load Transfer Platform for Pile-Supported Embankments (GLTP-PSE) through comprehensive 3D Finite Element (FE) analyses. It scrutinizes the assumed arching mechanisms, methodologies, design criteria (arching height, maximum strain, differential settlement, and T in geosynthetics), and overall performance of these methods. The 3D FE analysis results and measurements from two case studies were compared with six established GLTP-PSE design methods based on the four design criteria. Key findings include the identification of a progressive concentrated ellipsoid as the developed soil arching formation, with arching height dependent on the embankment equivalent height (including embankment and traffic load), pile spacing, maximum strain along the geosynthetics, and the number of geosynthetic layers. The load distribution on geosynthetic reinforcement was observed to align more closely with a non-linear inverse triangle. These insights led to recommendations for updating existing design methods, enhancing the accuracy and reliability of GLTP-PSE designs. The study's outcomes contribute significantly to advancing and refining GLTP-PSE design practices by providing a deeper understanding of soil arching mechanisms and the performance of geosynthetic reinforcements.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.