卡普托半动力系统的吸引子

IF 2.5 2区 数学 Q1 MATHEMATICS
T. S. Doan, P. E. Kloeden
{"title":"卡普托半动力系统的吸引子","authors":"T. S. Doan, P. E. Kloeden","doi":"10.1007/s13540-024-00324-x","DOIUrl":null,"url":null,"abstract":"<p>The Volterra integral equation associated with autonomous Caputo fractional differential equation (FDE) of order <span>\\(\\alpha \\in (0,1)\\)</span> in <span>\\({\\mathbb {R}}^d\\)</span> was shown by the authors [4] to generate a semi-group on the space <span>\\({\\mathfrak {C}}\\)</span> of continuous functions <span>\\(f:{\\mathbb {R}}^+\\rightarrow {\\mathbb {R}}^d\\)</span> with the topology uniform convergence on compact subsets. It serves as a semi-dynamical system for the Caputo FDE when restricted to initial functions <i>f</i>(<i>t</i>) <span>\\(\\equiv \\)</span> <span>\\(id_{x_0}\\)</span> for <span>\\(x_0\\)</span> <span>\\(\\in \\)</span> <span>\\({\\mathbb {R}}^d\\)</span>. Here it is shown that this semi-dynamical system has a global Caputo attractor in <span>\\({\\mathfrak {C}}\\)</span>, which is closed, bounded, invariant and attracts constant initial functions, when the vector field function in the Caputo FDE satisfies a dissipativity condition as well as a local Lipschitz condition.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"23 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attractors of Caputo semi-dynamical systems\",\"authors\":\"T. S. Doan, P. E. Kloeden\",\"doi\":\"10.1007/s13540-024-00324-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Volterra integral equation associated with autonomous Caputo fractional differential equation (FDE) of order <span>\\\\(\\\\alpha \\\\in (0,1)\\\\)</span> in <span>\\\\({\\\\mathbb {R}}^d\\\\)</span> was shown by the authors [4] to generate a semi-group on the space <span>\\\\({\\\\mathfrak {C}}\\\\)</span> of continuous functions <span>\\\\(f:{\\\\mathbb {R}}^+\\\\rightarrow {\\\\mathbb {R}}^d\\\\)</span> with the topology uniform convergence on compact subsets. It serves as a semi-dynamical system for the Caputo FDE when restricted to initial functions <i>f</i>(<i>t</i>) <span>\\\\(\\\\equiv \\\\)</span> <span>\\\\(id_{x_0}\\\\)</span> for <span>\\\\(x_0\\\\)</span> <span>\\\\(\\\\in \\\\)</span> <span>\\\\({\\\\mathbb {R}}^d\\\\)</span>. Here it is shown that this semi-dynamical system has a global Caputo attractor in <span>\\\\({\\\\mathfrak {C}}\\\\)</span>, which is closed, bounded, invariant and attracts constant initial functions, when the vector field function in the Caputo FDE satisfies a dissipativity condition as well as a local Lipschitz condition.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00324-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00324-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

作者[4]证明了与 \({\mathbb {R}}^d\) 中阶为 \(\alpha \in (0,1)\) 的自主卡普托分数微分方程(FDE)相关的 Volterra 积分方程在连续函数 \(f. \alpha \in (0,1)\) 的空间 \({\mathfrak {C}}\) 上生成了一个半群:f: {mathbb {R}^+\rightarrow {mathbb {R}^d\) 在紧凑子集上具有拓扑均匀收敛性。当初始函数 f(t) \(\equiv \) \(id_{x_0}\) for \(x_0\) \(\in \) \({\mathbb {R}}^d\) 时,它可以作为 Caputo FDE 的半动态系统。这里表明,当 Caputo FDE 中的向量场函数满足耗散性条件以及局部 Lipschitz 条件时,这个半动力系统在 \({\mathfrak {C}}\) 中有一个全局 Caputo 吸引子,它是封闭的、有边界的、不变的并且吸引恒定的初始函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attractors of Caputo semi-dynamical systems

The Volterra integral equation associated with autonomous Caputo fractional differential equation (FDE) of order \(\alpha \in (0,1)\) in \({\mathbb {R}}^d\) was shown by the authors [4] to generate a semi-group on the space \({\mathfrak {C}}\) of continuous functions \(f:{\mathbb {R}}^+\rightarrow {\mathbb {R}}^d\) with the topology uniform convergence on compact subsets. It serves as a semi-dynamical system for the Caputo FDE when restricted to initial functions f(t) \(\equiv \) \(id_{x_0}\) for \(x_0\) \(\in \) \({\mathbb {R}}^d\). Here it is shown that this semi-dynamical system has a global Caputo attractor in \({\mathfrak {C}}\), which is closed, bounded, invariant and attracts constant initial functions, when the vector field function in the Caputo FDE satisfies a dissipativity condition as well as a local Lipschitz condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信