{"title":"来自预测视觉的认知地图","authors":"Margaret C. von Ebers, Xue-Xin Wei","doi":"10.1038/s42256-024-00885-9","DOIUrl":null,"url":null,"abstract":"Constructing spatial maps from sensory inputs is challenging in both neuroscience and artificial intelligence. A recent study demonstrates that a self-attention neural network using predictive coding can generate an environmental map in its latent space as an agent that navigates the environment.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 8","pages":"850-851"},"PeriodicalIF":18.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cognitive maps from predictive vision\",\"authors\":\"Margaret C. von Ebers, Xue-Xin Wei\",\"doi\":\"10.1038/s42256-024-00885-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constructing spatial maps from sensory inputs is challenging in both neuroscience and artificial intelligence. A recent study demonstrates that a self-attention neural network using predictive coding can generate an environmental map in its latent space as an agent that navigates the environment.\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"6 8\",\"pages\":\"850-851\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.nature.com/articles/s42256-024-00885-9\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00885-9","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Constructing spatial maps from sensory inputs is challenging in both neuroscience and artificial intelligence. A recent study demonstrates that a self-attention neural network using predictive coding can generate an environmental map in its latent space as an agent that navigates the environment.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.