{"title":"解码信息末端:PASTA 为替代性多腺苷酸化机制提供了思路","authors":"","doi":"10.1016/j.molcel.2024.07.015","DOIUrl":null,"url":null,"abstract":"<p>In a recent publication in <em>Cell</em>, Kowalski et al.<span><span><sup>1</sup></span></span> developed an interdisciplinary and multiplexed approach to uncover regulatory modules of alternative polyadenylation, involving single-cell-based gene perturbation, isoform abundance analysis, machine learning of RNA motifs, and massively parallel reporter assays.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":null,"pages":null},"PeriodicalIF":14.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding the end of message: PASTA provides food for thought on mechanisms of alternative polyadenylation\",\"authors\":\"\",\"doi\":\"10.1016/j.molcel.2024.07.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a recent publication in <em>Cell</em>, Kowalski et al.<span><span><sup>1</sup></span></span> developed an interdisciplinary and multiplexed approach to uncover regulatory modules of alternative polyadenylation, involving single-cell-based gene perturbation, isoform abundance analysis, machine learning of RNA motifs, and massively parallel reporter assays.</p>\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2024.07.015\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.07.015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Decoding the end of message: PASTA provides food for thought on mechanisms of alternative polyadenylation
In a recent publication in Cell, Kowalski et al.1 developed an interdisciplinary and multiplexed approach to uncover regulatory modules of alternative polyadenylation, involving single-cell-based gene perturbation, isoform abundance analysis, machine learning of RNA motifs, and massively parallel reporter assays.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.