{"title":"基于扩散模型的牙科锥形束 CT 口内光学扫描数据金属伪影消除方法","authors":"Yuyang Wang, Xiaomo Liu, Liang Li","doi":"10.1109/TMI.2024.3440009","DOIUrl":null,"url":null,"abstract":"<p><p>In dental cone-beam computed tomography (CBCT), metal implants can cause metal artifacts, affecting image quality and the final medical diagnosis. To reduce the impact of metal artifacts, our proposed metal artifacts reduction (MAR) method takes a novel approach by integrating CBCT data with intraoral optical scanning data, utilizing information from these two different modalities to correct metal artifacts in the projection domain using a guided-diffusion model. The intraoral optical scanning data provides a more accurate generation domain for the diffusion model. We have proposed a multi-channel generation method in the training and generation stage of the diffusion model, considering the physical mechanism of CBCT, to ensure the consistency of the diffusion model generation. In this paper, we present experimental results that convincingly demonstrate the feasibility and efficacy of our approach, which introduces intraoral optical scanning data into the analysis and processing of projection domain data using the diffusion model for the first time, and modifies the diffusion model to better adapt to the physical model of CBCT.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal Artifacts Reducing Method Based on Diffusion Model Using Intraoral Optical Scanning Data for Dental Cone-beam CT.\",\"authors\":\"Yuyang Wang, Xiaomo Liu, Liang Li\",\"doi\":\"10.1109/TMI.2024.3440009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In dental cone-beam computed tomography (CBCT), metal implants can cause metal artifacts, affecting image quality and the final medical diagnosis. To reduce the impact of metal artifacts, our proposed metal artifacts reduction (MAR) method takes a novel approach by integrating CBCT data with intraoral optical scanning data, utilizing information from these two different modalities to correct metal artifacts in the projection domain using a guided-diffusion model. The intraoral optical scanning data provides a more accurate generation domain for the diffusion model. We have proposed a multi-channel generation method in the training and generation stage of the diffusion model, considering the physical mechanism of CBCT, to ensure the consistency of the diffusion model generation. In this paper, we present experimental results that convincingly demonstrate the feasibility and efficacy of our approach, which introduces intraoral optical scanning data into the analysis and processing of projection domain data using the diffusion model for the first time, and modifies the diffusion model to better adapt to the physical model of CBCT.</p>\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMI.2024.3440009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3440009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Metal Artifacts Reducing Method Based on Diffusion Model Using Intraoral Optical Scanning Data for Dental Cone-beam CT.
In dental cone-beam computed tomography (CBCT), metal implants can cause metal artifacts, affecting image quality and the final medical diagnosis. To reduce the impact of metal artifacts, our proposed metal artifacts reduction (MAR) method takes a novel approach by integrating CBCT data with intraoral optical scanning data, utilizing information from these two different modalities to correct metal artifacts in the projection domain using a guided-diffusion model. The intraoral optical scanning data provides a more accurate generation domain for the diffusion model. We have proposed a multi-channel generation method in the training and generation stage of the diffusion model, considering the physical mechanism of CBCT, to ensure the consistency of the diffusion model generation. In this paper, we present experimental results that convincingly demonstrate the feasibility and efficacy of our approach, which introduces intraoral optical scanning data into the analysis and processing of projection domain data using the diffusion model for the first time, and modifies the diffusion model to better adapt to the physical model of CBCT.