Yong Hur, Byung-Mo Oh, Han Gil Seo, Sung Eun Hyun, Dong-Joo Kim, Hakseung Kim, Tae-Seong Han, Hye Jung Park, Chae Hyeon Lee, Woo Hyung Lee
{"title":"卧床健康人和亚急性脑卒中患者在最大和次最大自主等长收缩过程中下肢肌肉表面肌电图的可靠性。","authors":"Yong Hur, Byung-Mo Oh, Han Gil Seo, Sung Eun Hyun, Dong-Joo Kim, Hakseung Kim, Tae-Seong Han, Hye Jung Park, Chae Hyeon Lee, Woo Hyung Lee","doi":"10.12786/bn.2024.17.e14","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to develop maximal voluntary isometric contraction (MVIC) and submaximal voluntary isometric contraction (subMVIC) methods and to assess the reliability of the developed methods for in-bed healthy individuals and patients with subacute stroke. The electromyography (EMG) activities from the lower-limb muscles including the tensor fascia lata (TFL), rectus femoris (RF), tibialis anterior (TA), and gastrocnemius (GC) on both sides were recorded during MVIC and subMVIC using surface EMG sensors in 20 healthy individuals and 20 subacute stroke patients. In inter-trial reliability, both MVIC and subMVIC methods demonstrated excellent reliability for all the measured muscles at baseline and follow-up evaluations in both healthy individuals and stroke patients. In inter-day reliability, MVIC showed good reliability for the TFL and moderate reliability for the RF, TA, and GC, while subMVIC showed good reliability for the TFL, RF, and GC and poor reliability for the TA in healthy individuals. In conclusion, the MVIC and subMVIC methods of EMG activities were feasible in in-bed healthy individuals and patients with subacute stroke. The results can serve as a basis for the clinical evaluation of muscular activities using quantitative EMG signals on the lower-limb muscles in stroke patients with impaired mobility.</p>","PeriodicalId":72442,"journal":{"name":"Brain & NeuroRehabilitation","volume":"17 2","pages":"e14"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300959/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reliability of Surface Electromyography From the Lower-limb Muscles During Maximal and Submaximal Voluntary Isometric Contractions in In-bed Healthy Individuals and Patients With Subacute Stroke.\",\"authors\":\"Yong Hur, Byung-Mo Oh, Han Gil Seo, Sung Eun Hyun, Dong-Joo Kim, Hakseung Kim, Tae-Seong Han, Hye Jung Park, Chae Hyeon Lee, Woo Hyung Lee\",\"doi\":\"10.12786/bn.2024.17.e14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to develop maximal voluntary isometric contraction (MVIC) and submaximal voluntary isometric contraction (subMVIC) methods and to assess the reliability of the developed methods for in-bed healthy individuals and patients with subacute stroke. The electromyography (EMG) activities from the lower-limb muscles including the tensor fascia lata (TFL), rectus femoris (RF), tibialis anterior (TA), and gastrocnemius (GC) on both sides were recorded during MVIC and subMVIC using surface EMG sensors in 20 healthy individuals and 20 subacute stroke patients. In inter-trial reliability, both MVIC and subMVIC methods demonstrated excellent reliability for all the measured muscles at baseline and follow-up evaluations in both healthy individuals and stroke patients. In inter-day reliability, MVIC showed good reliability for the TFL and moderate reliability for the RF, TA, and GC, while subMVIC showed good reliability for the TFL, RF, and GC and poor reliability for the TA in healthy individuals. In conclusion, the MVIC and subMVIC methods of EMG activities were feasible in in-bed healthy individuals and patients with subacute stroke. The results can serve as a basis for the clinical evaluation of muscular activities using quantitative EMG signals on the lower-limb muscles in stroke patients with impaired mobility.</p>\",\"PeriodicalId\":72442,\"journal\":{\"name\":\"Brain & NeuroRehabilitation\",\"volume\":\"17 2\",\"pages\":\"e14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300959/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain & NeuroRehabilitation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12786/bn.2024.17.e14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain & NeuroRehabilitation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12786/bn.2024.17.e14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Reliability of Surface Electromyography From the Lower-limb Muscles During Maximal and Submaximal Voluntary Isometric Contractions in In-bed Healthy Individuals and Patients With Subacute Stroke.
This study aims to develop maximal voluntary isometric contraction (MVIC) and submaximal voluntary isometric contraction (subMVIC) methods and to assess the reliability of the developed methods for in-bed healthy individuals and patients with subacute stroke. The electromyography (EMG) activities from the lower-limb muscles including the tensor fascia lata (TFL), rectus femoris (RF), tibialis anterior (TA), and gastrocnemius (GC) on both sides were recorded during MVIC and subMVIC using surface EMG sensors in 20 healthy individuals and 20 subacute stroke patients. In inter-trial reliability, both MVIC and subMVIC methods demonstrated excellent reliability for all the measured muscles at baseline and follow-up evaluations in both healthy individuals and stroke patients. In inter-day reliability, MVIC showed good reliability for the TFL and moderate reliability for the RF, TA, and GC, while subMVIC showed good reliability for the TFL, RF, and GC and poor reliability for the TA in healthy individuals. In conclusion, the MVIC and subMVIC methods of EMG activities were feasible in in-bed healthy individuals and patients with subacute stroke. The results can serve as a basis for the clinical evaluation of muscular activities using quantitative EMG signals on the lower-limb muscles in stroke patients with impaired mobility.