{"title":"利用卡方自动交互检测模型预测约旦男性心脏病患者的死亡率。","authors":"Salam Bani Hani, Muayyad Ahmad","doi":"10.1177/14604582241270830","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> One of the most complicated cardiovascular diseases in the world is heart attack. Since men are the most likely to develop cardiac diseases, accurate prediction of these conditions can help save lives in this population. This study proposed the Chi-Squared Automated Interactive Detection (CHAID) model as a prediction algorithm to forecast death versus life among men who might experience heart attacks. <b>Methods:</b> Data were extracted from the electronic health solution system in Jordan using a retrospective, predictive study. Between 2015 and 2021, information on men admitted to public hospitals in Jordan was gathered. <b>Results:</b> The CHAID algorithm had a higher accuracy of 93.72% and an area under the curve of 0.792, making it the best top model created to predict mortality among Jordanian men. It was discovered that among Jordanian men, governorates, age, pulse oximetry, medical diagnosis, pulse pressure, heart rate, systolic blood pressure, and pulse pressure were the most significant predicted risk factors of mortality from heart attack. <b>Conclusion:</b> With heart attack complaints as the primary risk factors that were predicted using machine learning algorithms like the CHAID model, demographic characteristics and hemodynamic readings were presented.</p>","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":"30 3","pages":"14604582241270830"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting mortality amongst Jordanian men with heart attacks using the chi-square automatic interaction detection model.\",\"authors\":\"Salam Bani Hani, Muayyad Ahmad\",\"doi\":\"10.1177/14604582241270830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> One of the most complicated cardiovascular diseases in the world is heart attack. Since men are the most likely to develop cardiac diseases, accurate prediction of these conditions can help save lives in this population. This study proposed the Chi-Squared Automated Interactive Detection (CHAID) model as a prediction algorithm to forecast death versus life among men who might experience heart attacks. <b>Methods:</b> Data were extracted from the electronic health solution system in Jordan using a retrospective, predictive study. Between 2015 and 2021, information on men admitted to public hospitals in Jordan was gathered. <b>Results:</b> The CHAID algorithm had a higher accuracy of 93.72% and an area under the curve of 0.792, making it the best top model created to predict mortality among Jordanian men. It was discovered that among Jordanian men, governorates, age, pulse oximetry, medical diagnosis, pulse pressure, heart rate, systolic blood pressure, and pulse pressure were the most significant predicted risk factors of mortality from heart attack. <b>Conclusion:</b> With heart attack complaints as the primary risk factors that were predicted using machine learning algorithms like the CHAID model, demographic characteristics and hemodynamic readings were presented.</p>\",\"PeriodicalId\":55069,\"journal\":{\"name\":\"Health Informatics Journal\",\"volume\":\"30 3\",\"pages\":\"14604582241270830\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Informatics Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/14604582241270830\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14604582241270830","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Predicting mortality amongst Jordanian men with heart attacks using the chi-square automatic interaction detection model.
Background: One of the most complicated cardiovascular diseases in the world is heart attack. Since men are the most likely to develop cardiac diseases, accurate prediction of these conditions can help save lives in this population. This study proposed the Chi-Squared Automated Interactive Detection (CHAID) model as a prediction algorithm to forecast death versus life among men who might experience heart attacks. Methods: Data were extracted from the electronic health solution system in Jordan using a retrospective, predictive study. Between 2015 and 2021, information on men admitted to public hospitals in Jordan was gathered. Results: The CHAID algorithm had a higher accuracy of 93.72% and an area under the curve of 0.792, making it the best top model created to predict mortality among Jordanian men. It was discovered that among Jordanian men, governorates, age, pulse oximetry, medical diagnosis, pulse pressure, heart rate, systolic blood pressure, and pulse pressure were the most significant predicted risk factors of mortality from heart attack. Conclusion: With heart attack complaints as the primary risk factors that were predicted using machine learning algorithms like the CHAID model, demographic characteristics and hemodynamic readings were presented.
期刊介绍:
Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.