{"title":"分析程序的开发和拟议的既定条件:基于质谱法的 NDSRI 分析程序案例研究。","authors":"","doi":"10.1016/j.xphs.2024.07.022","DOIUrl":null,"url":null,"abstract":"<div><div>With the finalization of the ICH Q14 Analytical Procedure Development guideline, how to apply enhanced approaches (such as analytical quality by design (AQbD)) to develop an analytical procedure, and to propose Established Conditions (ECs) and corresponding reporting categories, is increasingly being discussed. To gain practical experience in applying an enhanced approach for method development and identifying ECs, we developed, validated, and implemented an analytical procedure for a nitrosamine drug substance-related impurity (NDSRI). Here, as an example of the application of Q12 Lifecycle Management guideline principles in regards to analytical procedures, we briefly elaborate how: 1) the principles documented in the ICH Q14 guideline for analytical procedure development were applied, with the focus on identifying an Analytical Target Profile (ATP), knowledge management and risk assessment; 2) analytical procedure robustness according to the recommendations in ICH Q2(R2) Validation of Analytical Procedure guideline and Q14, were evaluated; and 3) mass spectrometry ECs and associated proposed reporting categories were proposed.</div></div>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Procedure Development and Proposed Established Conditions: A Case Study of a Mass Spectrometry Based NDSRI Analytical Procedure\",\"authors\":\"\",\"doi\":\"10.1016/j.xphs.2024.07.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the finalization of the ICH Q14 Analytical Procedure Development guideline, how to apply enhanced approaches (such as analytical quality by design (AQbD)) to develop an analytical procedure, and to propose Established Conditions (ECs) and corresponding reporting categories, is increasingly being discussed. To gain practical experience in applying an enhanced approach for method development and identifying ECs, we developed, validated, and implemented an analytical procedure for a nitrosamine drug substance-related impurity (NDSRI). Here, as an example of the application of Q12 Lifecycle Management guideline principles in regards to analytical procedures, we briefly elaborate how: 1) the principles documented in the ICH Q14 guideline for analytical procedure development were applied, with the focus on identifying an Analytical Target Profile (ATP), knowledge management and risk assessment; 2) analytical procedure robustness according to the recommendations in ICH Q2(R2) Validation of Analytical Procedure guideline and Q14, were evaluated; and 3) mass spectrometry ECs and associated proposed reporting categories were proposed.</div></div>\",\"PeriodicalId\":16741,\"journal\":{\"name\":\"Journal of pharmaceutical sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022354924002661\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022354924002661","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
摘要
随着 ICH Q14 分析程序开发指南的最终确定,如何应用增强型方法(如分析质量设计法 (AQbD))来开发分析程序,并提出既定条件 (EC) 和相应的报告类别正越来越多地被讨论。为了获得应用增强方法开发方法和确定EC的实践经验,我们开发、验证并实施了亚硝胺药物物质相关杂质(NDSRI)的分析程序。在此,作为 Q12 生命周期管理指南原则在分析程序中的应用实例,我们简要阐述了如何做到以下几点:1) 应用了 ICH Q14 指南中关于分析程序开发的原则,重点是确定分析目标轮廓 (ATP)、知识管理和风险评估;2) 根据 ICH Q2(R2) 分析程序验证指南和 Q14 中的建议评估了分析程序的稳健性;3) 提出了质谱 EC 和相关的建议报告类别。
Analytical Procedure Development and Proposed Established Conditions: A Case Study of a Mass Spectrometry Based NDSRI Analytical Procedure
With the finalization of the ICH Q14 Analytical Procedure Development guideline, how to apply enhanced approaches (such as analytical quality by design (AQbD)) to develop an analytical procedure, and to propose Established Conditions (ECs) and corresponding reporting categories, is increasingly being discussed. To gain practical experience in applying an enhanced approach for method development and identifying ECs, we developed, validated, and implemented an analytical procedure for a nitrosamine drug substance-related impurity (NDSRI). Here, as an example of the application of Q12 Lifecycle Management guideline principles in regards to analytical procedures, we briefly elaborate how: 1) the principles documented in the ICH Q14 guideline for analytical procedure development were applied, with the focus on identifying an Analytical Target Profile (ATP), knowledge management and risk assessment; 2) analytical procedure robustness according to the recommendations in ICH Q2(R2) Validation of Analytical Procedure guideline and Q14, were evaluated; and 3) mass spectrometry ECs and associated proposed reporting categories were proposed.
期刊介绍:
The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.