Margo I. Jansen, Yasir Mahmood, Jordan Lee, Sarah Thomas Broome, James A. Waschek, Alessandro Castorina
{"title":"在铜绿素脱髓鞘模型中,靶向 PAC1 受体可减轻髓鞘和突触标记物的降解,并减轻运动障碍。","authors":"Margo I. Jansen, Yasir Mahmood, Jordan Lee, Sarah Thomas Broome, James A. Waschek, Alessandro Castorina","doi":"10.1111/jnc.16199","DOIUrl":null,"url":null,"abstract":"<p>Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong neuroinflammatory component. Current treatments principally target the immune system but fail to preserve long-term myelin health and do not prevent neurological decline. Studies over the past two decades have shown that the structurally related neuropeptides VIP and PACAP (vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide, respectively) exhibit pronounced anti-inflammatory activities and reduce clinical symptoms in MS disease models, largely via actions on their bivalent VIP receptor type 1 and 2. Here, using the cuprizone demyelination model, we demonstrate that PACAP and VIP, and strikingly the PACAP-selective receptor PAC1 agonist maxadilan, prevented locomotor deficits in the horizontal ladder and open field tests. Moreover, only PACAP and maxadilan were able to prevent myelin deterioration, as assessed by a reduction in the expression of the myelin markers proteolipid protein 1, oligodendrocyte transcription factor 2, quaking-7 (APC) and Luxol Fast Blue staining. Furthermore, PACAP and maxadilan (but not VIP), prevented striatal synaptic loss and diminished astrocyte and microglial activation in the corpus callosum of cuprizone-fed mice. In vitro, PACAP or maxadilan prevented lipopolysaccharide (LPS)-induced polarisation of primary astrocytes at 12–24 h, an effect that was not seen with maxadilan in LPS-stimulated microglia. Taken together, our data demonstrates for the first time that PAC1 agonists provide distinctive protective effects against white matter deterioration, neuroinflammation and consequent locomotor dysfunctions in the cuprizone model. The results indicate that targeting the PAC1 receptor may provide a path to treat myelin-related diseases in humans.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.16199","citationCount":"0","resultStr":"{\"title\":\"Targeting the PAC1 receptor mitigates degradation of myelin and synaptic markers and diminishes locomotor deficits in the cuprizone demyelination model\",\"authors\":\"Margo I. Jansen, Yasir Mahmood, Jordan Lee, Sarah Thomas Broome, James A. Waschek, Alessandro Castorina\",\"doi\":\"10.1111/jnc.16199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong neuroinflammatory component. Current treatments principally target the immune system but fail to preserve long-term myelin health and do not prevent neurological decline. Studies over the past two decades have shown that the structurally related neuropeptides VIP and PACAP (vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide, respectively) exhibit pronounced anti-inflammatory activities and reduce clinical symptoms in MS disease models, largely via actions on their bivalent VIP receptor type 1 and 2. Here, using the cuprizone demyelination model, we demonstrate that PACAP and VIP, and strikingly the PACAP-selective receptor PAC1 agonist maxadilan, prevented locomotor deficits in the horizontal ladder and open field tests. Moreover, only PACAP and maxadilan were able to prevent myelin deterioration, as assessed by a reduction in the expression of the myelin markers proteolipid protein 1, oligodendrocyte transcription factor 2, quaking-7 (APC) and Luxol Fast Blue staining. Furthermore, PACAP and maxadilan (but not VIP), prevented striatal synaptic loss and diminished astrocyte and microglial activation in the corpus callosum of cuprizone-fed mice. In vitro, PACAP or maxadilan prevented lipopolysaccharide (LPS)-induced polarisation of primary astrocytes at 12–24 h, an effect that was not seen with maxadilan in LPS-stimulated microglia. Taken together, our data demonstrates for the first time that PAC1 agonists provide distinctive protective effects against white matter deterioration, neuroinflammation and consequent locomotor dysfunctions in the cuprizone model. The results indicate that targeting the PAC1 receptor may provide a path to treat myelin-related diseases in humans.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":16527,\"journal\":{\"name\":\"Journal of Neurochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.16199\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jnc.16199\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.16199","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Targeting the PAC1 receptor mitigates degradation of myelin and synaptic markers and diminishes locomotor deficits in the cuprizone demyelination model
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong neuroinflammatory component. Current treatments principally target the immune system but fail to preserve long-term myelin health and do not prevent neurological decline. Studies over the past two decades have shown that the structurally related neuropeptides VIP and PACAP (vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide, respectively) exhibit pronounced anti-inflammatory activities and reduce clinical symptoms in MS disease models, largely via actions on their bivalent VIP receptor type 1 and 2. Here, using the cuprizone demyelination model, we demonstrate that PACAP and VIP, and strikingly the PACAP-selective receptor PAC1 agonist maxadilan, prevented locomotor deficits in the horizontal ladder and open field tests. Moreover, only PACAP and maxadilan were able to prevent myelin deterioration, as assessed by a reduction in the expression of the myelin markers proteolipid protein 1, oligodendrocyte transcription factor 2, quaking-7 (APC) and Luxol Fast Blue staining. Furthermore, PACAP and maxadilan (but not VIP), prevented striatal synaptic loss and diminished astrocyte and microglial activation in the corpus callosum of cuprizone-fed mice. In vitro, PACAP or maxadilan prevented lipopolysaccharide (LPS)-induced polarisation of primary astrocytes at 12–24 h, an effect that was not seen with maxadilan in LPS-stimulated microglia. Taken together, our data demonstrates for the first time that PAC1 agonists provide distinctive protective effects against white matter deterioration, neuroinflammation and consequent locomotor dysfunctions in the cuprizone model. The results indicate that targeting the PAC1 receptor may provide a path to treat myelin-related diseases in humans.
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.