在铜绿素脱髓鞘模型中,靶向 PAC1 受体可减轻髓鞘和突触标记物的降解,并减轻运动障碍。

IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Margo I. Jansen, Yasir Mahmood, Jordan Lee, Sarah Thomas Broome, James A. Waschek, Alessandro Castorina
{"title":"在铜绿素脱髓鞘模型中,靶向 PAC1 受体可减轻髓鞘和突触标记物的降解,并减轻运动障碍。","authors":"Margo I. Jansen,&nbsp;Yasir Mahmood,&nbsp;Jordan Lee,&nbsp;Sarah Thomas Broome,&nbsp;James A. Waschek,&nbsp;Alessandro Castorina","doi":"10.1111/jnc.16199","DOIUrl":null,"url":null,"abstract":"<p>Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong neuroinflammatory component. Current treatments principally target the immune system but fail to preserve long-term myelin health and do not prevent neurological decline. Studies over the past two decades have shown that the structurally related neuropeptides VIP and PACAP (vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide, respectively) exhibit pronounced anti-inflammatory activities and reduce clinical symptoms in MS disease models, largely via actions on their bivalent VIP receptor type 1 and 2. Here, using the cuprizone demyelination model, we demonstrate that PACAP and VIP, and strikingly the PACAP-selective receptor PAC1 agonist maxadilan, prevented locomotor deficits in the horizontal ladder and open field tests. Moreover, only PACAP and maxadilan were able to prevent myelin deterioration, as assessed by a reduction in the expression of the myelin markers proteolipid protein 1, oligodendrocyte transcription factor 2, quaking-7 (APC) and Luxol Fast Blue staining. Furthermore, PACAP and maxadilan (but not VIP), prevented striatal synaptic loss and diminished astrocyte and microglial activation in the corpus callosum of cuprizone-fed mice. In vitro, PACAP or maxadilan prevented lipopolysaccharide (LPS)-induced polarisation of primary astrocytes at 12–24 h, an effect that was not seen with maxadilan in LPS-stimulated microglia. Taken together, our data demonstrates for the first time that PAC1 agonists provide distinctive protective effects against white matter deterioration, neuroinflammation and consequent locomotor dysfunctions in the cuprizone model. The results indicate that targeting the PAC1 receptor may provide a path to treat myelin-related diseases in humans.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.16199","citationCount":"0","resultStr":"{\"title\":\"Targeting the PAC1 receptor mitigates degradation of myelin and synaptic markers and diminishes locomotor deficits in the cuprizone demyelination model\",\"authors\":\"Margo I. Jansen,&nbsp;Yasir Mahmood,&nbsp;Jordan Lee,&nbsp;Sarah Thomas Broome,&nbsp;James A. Waschek,&nbsp;Alessandro Castorina\",\"doi\":\"10.1111/jnc.16199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong neuroinflammatory component. Current treatments principally target the immune system but fail to preserve long-term myelin health and do not prevent neurological decline. Studies over the past two decades have shown that the structurally related neuropeptides VIP and PACAP (vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide, respectively) exhibit pronounced anti-inflammatory activities and reduce clinical symptoms in MS disease models, largely via actions on their bivalent VIP receptor type 1 and 2. Here, using the cuprizone demyelination model, we demonstrate that PACAP and VIP, and strikingly the PACAP-selective receptor PAC1 agonist maxadilan, prevented locomotor deficits in the horizontal ladder and open field tests. Moreover, only PACAP and maxadilan were able to prevent myelin deterioration, as assessed by a reduction in the expression of the myelin markers proteolipid protein 1, oligodendrocyte transcription factor 2, quaking-7 (APC) and Luxol Fast Blue staining. Furthermore, PACAP and maxadilan (but not VIP), prevented striatal synaptic loss and diminished astrocyte and microglial activation in the corpus callosum of cuprizone-fed mice. In vitro, PACAP or maxadilan prevented lipopolysaccharide (LPS)-induced polarisation of primary astrocytes at 12–24 h, an effect that was not seen with maxadilan in LPS-stimulated microglia. Taken together, our data demonstrates for the first time that PAC1 agonists provide distinctive protective effects against white matter deterioration, neuroinflammation and consequent locomotor dysfunctions in the cuprizone model. The results indicate that targeting the PAC1 receptor may provide a path to treat myelin-related diseases in humans.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":16527,\"journal\":{\"name\":\"Journal of Neurochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.16199\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jnc.16199\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.16199","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多发性硬化症(MS)是一种中枢神经系统脱髓鞘疾病,具有很强的神经炎症性。目前的治疗方法主要针对免疫系统,但无法保持髓鞘的长期健康,也无法防止神经功能衰退。过去二十年的研究表明,结构相关的神经肽 VIP 和 PACAP(分别为血管活性肠肽和垂体腺苷酸环化酶激活多肽)具有明显的抗炎活性,并能减轻多发性硬化症疾病模型的临床症状,这主要是通过对其二价 VIP 受体 1 型和 2 型的作用实现的。在这里,我们利用铜绿酸脱髓鞘模型证明,PACAP 和 VIP,以及引人注目的 PACAP 选择性受体 PAC1 激动剂 maxadilan,可以防止水平梯子和开阔地试验中的运动障碍。此外,只有 PACAP 和 maxadilan 能够防止髓鞘退化,具体表现为髓鞘标志物蛋白脂质蛋白 1、少突胶质细胞转录因子 2、quaking-7(APC)和 Luxol Fast Blue 染色的减少。此外,PACAP 和 maxadilan(而非 VIP)可防止铜绿素喂养小鼠胼胝体中纹状体突触的丧失,并减少星形胶质细胞和小胶质细胞的活化。在体外,PACAP 或马沙地兰可在 12-24 小时内阻止脂多糖(LPS)诱导的原发性星形胶质细胞极化,但马沙地兰对 LPS 刺激的小胶质细胞却没有这种效果。综上所述,我们的数据首次证明了 PAC1 激动剂具有独特的保护作用,可防止铜绿素模型中的白质退化、神经炎症和随之而来的运动功能障碍。这些结果表明,以 PAC1 受体为靶点可能为治疗人类髓鞘相关疾病提供一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Targeting the PAC1 receptor mitigates degradation of myelin and synaptic markers and diminishes locomotor deficits in the cuprizone demyelination model

Targeting the PAC1 receptor mitigates degradation of myelin and synaptic markers and diminishes locomotor deficits in the cuprizone demyelination model

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong neuroinflammatory component. Current treatments principally target the immune system but fail to preserve long-term myelin health and do not prevent neurological decline. Studies over the past two decades have shown that the structurally related neuropeptides VIP and PACAP (vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide, respectively) exhibit pronounced anti-inflammatory activities and reduce clinical symptoms in MS disease models, largely via actions on their bivalent VIP receptor type 1 and 2. Here, using the cuprizone demyelination model, we demonstrate that PACAP and VIP, and strikingly the PACAP-selective receptor PAC1 agonist maxadilan, prevented locomotor deficits in the horizontal ladder and open field tests. Moreover, only PACAP and maxadilan were able to prevent myelin deterioration, as assessed by a reduction in the expression of the myelin markers proteolipid protein 1, oligodendrocyte transcription factor 2, quaking-7 (APC) and Luxol Fast Blue staining. Furthermore, PACAP and maxadilan (but not VIP), prevented striatal synaptic loss and diminished astrocyte and microglial activation in the corpus callosum of cuprizone-fed mice. In vitro, PACAP or maxadilan prevented lipopolysaccharide (LPS)-induced polarisation of primary astrocytes at 12–24 h, an effect that was not seen with maxadilan in LPS-stimulated microglia. Taken together, our data demonstrates for the first time that PAC1 agonists provide distinctive protective effects against white matter deterioration, neuroinflammation and consequent locomotor dysfunctions in the cuprizone model. The results indicate that targeting the PAC1 receptor may provide a path to treat myelin-related diseases in humans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neurochemistry
Journal of Neurochemistry 医学-神经科学
CiteScore
9.30
自引率
2.10%
发文量
181
审稿时长
2.2 months
期刊介绍: Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信