苹果酸脱氢酶的结构生物学和动力学。

IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Christopher E Berndsen, Jessica K Bell
{"title":"苹果酸脱氢酶的结构生物学和动力学。","authors":"Christopher E Berndsen, Jessica K Bell","doi":"10.1042/EBC20230082","DOIUrl":null,"url":null,"abstract":"<p><p>Malate dehydrogenase (MDH) enzymes catalyze the reversible oxidoreduction of malate to oxaloacetate using NAD(P) as a cofactor. This reaction is vital for metabolism and the exchange of reducing equivalents between cellular compartments. There are more than 100 structures of MDH in the Protein Data Bank, representing species from archaea, bacteria, and eukaryotes. This conserved family of enzymes shares a common nucleotide-binding domain, substrate-binding domain, and subunits associate to form a dimeric or a tetrameric enzyme. Despite the variety of crystallization conditions and ligands in the experimental structures, the conformation and configuration of MDH are similar. The quaternary structure and active site dynamics account for most conformational differences in the experimental MDH structures. Oligomerization appears essential for activity despite each subunit having a structurally independent active site. There are two dynamic regions within the active site that influence substrate binding and possibly catalysis, with one of these regions adjoining the subunit interface. In this review, we introduce the reader to the general structural framework of MDH highlighting the conservation of certain features and pointing out unique differences that regulate MDH enzyme activity.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"57-72"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The structural biology and dynamics of malate dehydrogenases.\",\"authors\":\"Christopher E Berndsen, Jessica K Bell\",\"doi\":\"10.1042/EBC20230082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Malate dehydrogenase (MDH) enzymes catalyze the reversible oxidoreduction of malate to oxaloacetate using NAD(P) as a cofactor. This reaction is vital for metabolism and the exchange of reducing equivalents between cellular compartments. There are more than 100 structures of MDH in the Protein Data Bank, representing species from archaea, bacteria, and eukaryotes. This conserved family of enzymes shares a common nucleotide-binding domain, substrate-binding domain, and subunits associate to form a dimeric or a tetrameric enzyme. Despite the variety of crystallization conditions and ligands in the experimental structures, the conformation and configuration of MDH are similar. The quaternary structure and active site dynamics account for most conformational differences in the experimental MDH structures. Oligomerization appears essential for activity despite each subunit having a structurally independent active site. There are two dynamic regions within the active site that influence substrate binding and possibly catalysis, with one of these regions adjoining the subunit interface. In this review, we introduce the reader to the general structural framework of MDH highlighting the conservation of certain features and pointing out unique differences that regulate MDH enzyme activity.</p>\",\"PeriodicalId\":11812,\"journal\":{\"name\":\"Essays in biochemistry\",\"volume\":\" \",\"pages\":\"57-72\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Essays in biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/EBC20230082\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20230082","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

苹果酸脱氢酶(MDH)利用 NAD(P)作为辅助因子,催化苹果酸到草酰乙酸的可逆氧化还原反应。这一反应对于新陈代谢和细胞间还原等价物的交换至关重要。蛋白质数据库中有 100 多种 MDH 结构,代表了来自古生菌、细菌和真核生物的物种。这个保守的酶家族有一个共同的核苷酸结合结构域和底物结合结构域,亚基可结合形成二聚体或四聚体酶。尽管结晶条件和实验结构中的配体各不相同,但 MDH 的构象和构型是相似的。四元结构和活性位点动力学是造成 MDH 实验结构中大部分构象差异的原因。尽管每个亚基都有一个结构独立的活性位点,但寡聚化似乎对活性至关重要。活性位点内有两个动态区域,它们影响底物的结合,也可能影响催化作用,其中一个区域毗邻亚基界面。在这篇综述中,我们将向读者介绍 MDH 的总体结构框架,强调某些特征的保守性,并指出调节 MDH 酶活性的独特差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The structural biology and dynamics of malate dehydrogenases.

Malate dehydrogenase (MDH) enzymes catalyze the reversible oxidoreduction of malate to oxaloacetate using NAD(P) as a cofactor. This reaction is vital for metabolism and the exchange of reducing equivalents between cellular compartments. There are more than 100 structures of MDH in the Protein Data Bank, representing species from archaea, bacteria, and eukaryotes. This conserved family of enzymes shares a common nucleotide-binding domain, substrate-binding domain, and subunits associate to form a dimeric or a tetrameric enzyme. Despite the variety of crystallization conditions and ligands in the experimental structures, the conformation and configuration of MDH are similar. The quaternary structure and active site dynamics account for most conformational differences in the experimental MDH structures. Oligomerization appears essential for activity despite each subunit having a structurally independent active site. There are two dynamic regions within the active site that influence substrate binding and possibly catalysis, with one of these regions adjoining the subunit interface. In this review, we introduce the reader to the general structural framework of MDH highlighting the conservation of certain features and pointing out unique differences that regulate MDH enzyme activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Essays in biochemistry
Essays in biochemistry 生物-生化与分子生物学
CiteScore
10.50
自引率
0.00%
发文量
105
审稿时长
>12 weeks
期刊介绍: Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic. Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points. Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place. Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信