Jonathan N Bauman, Angela C Doran, Gabrielle M Gualtieri, Brian Hee, Timothy Strelevitz, Matthew A Cerny, Christopher Banfield, Anna Plotka, Xiaoxing Wang, Vivek S Purohit, Martin E Dowty
{"title":"Janus 激酶 3 和酪氨酸蛋白激酶家族抑制剂 Ritlecitinib 在人体中的药代动力学、代谢和清除机制","authors":"Jonathan N Bauman, Angela C Doran, Gabrielle M Gualtieri, Brian Hee, Timothy Strelevitz, Matthew A Cerny, Christopher Banfield, Anna Plotka, Xiaoxing Wang, Vivek S Purohit, Martin E Dowty","doi":"10.1124/dmd.124.001843","DOIUrl":null,"url":null,"abstract":"<p><p>Ritlecitinib is an oral once-daily irreversible inhibitor of Janus kinase 3 and tyrosine-protein kinase family being developed for the treatment of moderate-to-severe alopecia areata. This study examined the disposition of ritlecitinib in male participants following oral and intravenous administration using accelerator mass spectroscopy methodology to estimate pharmacokinetic parameters and characterize metabolite profiles. The results indicated ritlecitinib had a systemic clearance of 43.7 L/h, a steady state volume of distribution of 73.8 L, extent of absorption of 89%, time to maximum plasma concentration of ∼0.5 hours, and absolute oral bioavailability of 64%. An observed long terminal half-life of total radioactivity was primarily attributed to ritlecitinib binding to plasma albumin. Ritlecitinib was the main circulating drug species in plasma (∼30%), with one major pharmacologically inactive cysteine conjugated metabolite (M2) at >10%. Oxidative metabolism (fractional clearance 0.47) and glutathione-related conjugation (fractional clearance 0.24) were the primary routes of elimination for ritlecitinib with the greatest disposition of radioactivity shown in the urine (∼71%). In vitro phenotyping indicated ritlecitinib cytochrome P450 (CYP) fraction of metabolism assignments of 0.29 for CYP3A, 0.09 for CYP2C8, 0.07 for CYP1A2, and 0.02 for CYP2C9. In vitro phenotyping in recombinant human glutathione S-transferases indicated ritlecitinib was turned over by a number of cytosolic and microsomal enzyme isoforms. SIGNIFICANCE STATEMENT: This study provides a detailed understanding of the disposition and metabolism of ritlecitinib, a JAK3 and TEC family kinase inhibitor for alopecia areata in humans, as well as characterization of clearance pathways and pharmacokinetics of ritlecitinib and its metabolites. As an AMS-based ADME study design, we have expanded on reporting the standard ADME endpoints, providing key pharmacokinetic parameters, such as clearance, volume of distribution, and bioavailability, allowing for a more comprehensive understanding of drug disposition.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":"1124-1136"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Pharmacokinetics, Metabolism, and Clearance Mechanisms of Ritlecitinib, a Janus Kinase 3 and Tyrosine-Protein Kinase Family Inhibitor, in Humans.\",\"authors\":\"Jonathan N Bauman, Angela C Doran, Gabrielle M Gualtieri, Brian Hee, Timothy Strelevitz, Matthew A Cerny, Christopher Banfield, Anna Plotka, Xiaoxing Wang, Vivek S Purohit, Martin E Dowty\",\"doi\":\"10.1124/dmd.124.001843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ritlecitinib is an oral once-daily irreversible inhibitor of Janus kinase 3 and tyrosine-protein kinase family being developed for the treatment of moderate-to-severe alopecia areata. This study examined the disposition of ritlecitinib in male participants following oral and intravenous administration using accelerator mass spectroscopy methodology to estimate pharmacokinetic parameters and characterize metabolite profiles. The results indicated ritlecitinib had a systemic clearance of 43.7 L/h, a steady state volume of distribution of 73.8 L, extent of absorption of 89%, time to maximum plasma concentration of ∼0.5 hours, and absolute oral bioavailability of 64%. An observed long terminal half-life of total radioactivity was primarily attributed to ritlecitinib binding to plasma albumin. Ritlecitinib was the main circulating drug species in plasma (∼30%), with one major pharmacologically inactive cysteine conjugated metabolite (M2) at >10%. Oxidative metabolism (fractional clearance 0.47) and glutathione-related conjugation (fractional clearance 0.24) were the primary routes of elimination for ritlecitinib with the greatest disposition of radioactivity shown in the urine (∼71%). In vitro phenotyping indicated ritlecitinib cytochrome P450 (CYP) fraction of metabolism assignments of 0.29 for CYP3A, 0.09 for CYP2C8, 0.07 for CYP1A2, and 0.02 for CYP2C9. In vitro phenotyping in recombinant human glutathione S-transferases indicated ritlecitinib was turned over by a number of cytosolic and microsomal enzyme isoforms. SIGNIFICANCE STATEMENT: This study provides a detailed understanding of the disposition and metabolism of ritlecitinib, a JAK3 and TEC family kinase inhibitor for alopecia areata in humans, as well as characterization of clearance pathways and pharmacokinetics of ritlecitinib and its metabolites. As an AMS-based ADME study design, we have expanded on reporting the standard ADME endpoints, providing key pharmacokinetic parameters, such as clearance, volume of distribution, and bioavailability, allowing for a more comprehensive understanding of drug disposition.</p>\",\"PeriodicalId\":11309,\"journal\":{\"name\":\"Drug Metabolism and Disposition\",\"volume\":\" \",\"pages\":\"1124-1136\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Metabolism and Disposition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1124/dmd.124.001843\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.124.001843","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The Pharmacokinetics, Metabolism, and Clearance Mechanisms of Ritlecitinib, a Janus Kinase 3 and Tyrosine-Protein Kinase Family Inhibitor, in Humans.
Ritlecitinib is an oral once-daily irreversible inhibitor of Janus kinase 3 and tyrosine-protein kinase family being developed for the treatment of moderate-to-severe alopecia areata. This study examined the disposition of ritlecitinib in male participants following oral and intravenous administration using accelerator mass spectroscopy methodology to estimate pharmacokinetic parameters and characterize metabolite profiles. The results indicated ritlecitinib had a systemic clearance of 43.7 L/h, a steady state volume of distribution of 73.8 L, extent of absorption of 89%, time to maximum plasma concentration of ∼0.5 hours, and absolute oral bioavailability of 64%. An observed long terminal half-life of total radioactivity was primarily attributed to ritlecitinib binding to plasma albumin. Ritlecitinib was the main circulating drug species in plasma (∼30%), with one major pharmacologically inactive cysteine conjugated metabolite (M2) at >10%. Oxidative metabolism (fractional clearance 0.47) and glutathione-related conjugation (fractional clearance 0.24) were the primary routes of elimination for ritlecitinib with the greatest disposition of radioactivity shown in the urine (∼71%). In vitro phenotyping indicated ritlecitinib cytochrome P450 (CYP) fraction of metabolism assignments of 0.29 for CYP3A, 0.09 for CYP2C8, 0.07 for CYP1A2, and 0.02 for CYP2C9. In vitro phenotyping in recombinant human glutathione S-transferases indicated ritlecitinib was turned over by a number of cytosolic and microsomal enzyme isoforms. SIGNIFICANCE STATEMENT: This study provides a detailed understanding of the disposition and metabolism of ritlecitinib, a JAK3 and TEC family kinase inhibitor for alopecia areata in humans, as well as characterization of clearance pathways and pharmacokinetics of ritlecitinib and its metabolites. As an AMS-based ADME study design, we have expanded on reporting the standard ADME endpoints, providing key pharmacokinetic parameters, such as clearance, volume of distribution, and bioavailability, allowing for a more comprehensive understanding of drug disposition.
期刊介绍:
An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.