{"title":"高尿酸通过 ROS-GPX4 信号协调铁氧化促进心肌病的发生","authors":"Chenxi Xu, Mengni Wu, Wei Yu, De Xie, Qiang Wang, Binyang Chen, Yuemei Xi, Linqian Yu, Yunbo Yan, Tetsuya Yamamoto, Hidenori Koyama, Hong Zhao, Jidong Cheng","doi":"10.1089/ars.2023.0473","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> High uric acid (HUA), as a pro-oxidant, plays a significant role in the pathophysiology of cardiovascular disease. Studies have indicated that elevated uric acid levels can adversely affect cardiovascular health. Nevertheless, the impact of hyperuricemia on cardiomyopathy remains uncertain. Further research is needed to elucidate the relationship between HUA and cardiomyopathy, shedding light on its potential implications for heart health. <b><i>Results:</i></b> We demonstrated that uricase knockout (Uox-KO) mice accelerated the development of cardiomyopathy, causing significantly impaired cardiac function and myocardial fibrosis. Meanwhile, the mitochondrial morphology was destroyed, the lipid peroxidation products increased in number and the antioxidant function was weakened. In addition, we evaluated the effects of ferrostatin-1 (Fer-1), the ferroptosis inhibitor. Myocardial damage can be reversed by the Fer-1 treatment caused by HUA combined with doxorubicin (DOX) treatment. Benzbromarone, a uric acid-lowering drug, decreases myocardial fibrosis, and ferroptosis by alleviating hyperuricemia in Uox-KO mice by DOX administration. In vitro, we observed that the activity of cardiomyocytes treated with HUA combined with DOX decreased significantly, and lipid reactive oxygen species (ROS) increased significantly. Afterward, we demonstrated that HUA can promote oxidative stress in DOX, characterized by increased mitochondrial ROS, and downregulate protein levels of glutathione peroxidase 4 (GPX4). <i>N</i>-acetyl-l-cysteine, an antioxidant, inhibits the process by which HUA promotes DOX-induced ferroptosis by increasing the GPX4 expression. <b><i>Innovation:</i></b> We verified that HUA can exacerbate myocardial damage. This has clinical implications for the treatment of cardiac damage in patients with hyperuricemia. <b><i>Conclusions:</i></b> Our data suggested that HUA promotes the cardiomyopathy. HUA promotes DOX-induced ferroptosis by increasing oxidative stress and downregulating GPX4. <i>Antioxid. Redox Signal.</i> 00, 00-00.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Uric Acid Orchestrates Ferroptosis to Promote Cardiomyopathy Via ROS-GPX4 Signaling.\",\"authors\":\"Chenxi Xu, Mengni Wu, Wei Yu, De Xie, Qiang Wang, Binyang Chen, Yuemei Xi, Linqian Yu, Yunbo Yan, Tetsuya Yamamoto, Hidenori Koyama, Hong Zhao, Jidong Cheng\",\"doi\":\"10.1089/ars.2023.0473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Aims:</i></b> High uric acid (HUA), as a pro-oxidant, plays a significant role in the pathophysiology of cardiovascular disease. Studies have indicated that elevated uric acid levels can adversely affect cardiovascular health. Nevertheless, the impact of hyperuricemia on cardiomyopathy remains uncertain. Further research is needed to elucidate the relationship between HUA and cardiomyopathy, shedding light on its potential implications for heart health. <b><i>Results:</i></b> We demonstrated that uricase knockout (Uox-KO) mice accelerated the development of cardiomyopathy, causing significantly impaired cardiac function and myocardial fibrosis. Meanwhile, the mitochondrial morphology was destroyed, the lipid peroxidation products increased in number and the antioxidant function was weakened. In addition, we evaluated the effects of ferrostatin-1 (Fer-1), the ferroptosis inhibitor. Myocardial damage can be reversed by the Fer-1 treatment caused by HUA combined with doxorubicin (DOX) treatment. Benzbromarone, a uric acid-lowering drug, decreases myocardial fibrosis, and ferroptosis by alleviating hyperuricemia in Uox-KO mice by DOX administration. In vitro, we observed that the activity of cardiomyocytes treated with HUA combined with DOX decreased significantly, and lipid reactive oxygen species (ROS) increased significantly. Afterward, we demonstrated that HUA can promote oxidative stress in DOX, characterized by increased mitochondrial ROS, and downregulate protein levels of glutathione peroxidase 4 (GPX4). <i>N</i>-acetyl-l-cysteine, an antioxidant, inhibits the process by which HUA promotes DOX-induced ferroptosis by increasing the GPX4 expression. <b><i>Innovation:</i></b> We verified that HUA can exacerbate myocardial damage. This has clinical implications for the treatment of cardiac damage in patients with hyperuricemia. <b><i>Conclusions:</i></b> Our data suggested that HUA promotes the cardiomyopathy. HUA promotes DOX-induced ferroptosis by increasing oxidative stress and downregulating GPX4. <i>Antioxid. Redox Signal.</i> 00, 00-00.</p>\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/ars.2023.0473\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2023.0473","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
High Uric Acid Orchestrates Ferroptosis to Promote Cardiomyopathy Via ROS-GPX4 Signaling.
Aims: High uric acid (HUA), as a pro-oxidant, plays a significant role in the pathophysiology of cardiovascular disease. Studies have indicated that elevated uric acid levels can adversely affect cardiovascular health. Nevertheless, the impact of hyperuricemia on cardiomyopathy remains uncertain. Further research is needed to elucidate the relationship between HUA and cardiomyopathy, shedding light on its potential implications for heart health. Results: We demonstrated that uricase knockout (Uox-KO) mice accelerated the development of cardiomyopathy, causing significantly impaired cardiac function and myocardial fibrosis. Meanwhile, the mitochondrial morphology was destroyed, the lipid peroxidation products increased in number and the antioxidant function was weakened. In addition, we evaluated the effects of ferrostatin-1 (Fer-1), the ferroptosis inhibitor. Myocardial damage can be reversed by the Fer-1 treatment caused by HUA combined with doxorubicin (DOX) treatment. Benzbromarone, a uric acid-lowering drug, decreases myocardial fibrosis, and ferroptosis by alleviating hyperuricemia in Uox-KO mice by DOX administration. In vitro, we observed that the activity of cardiomyocytes treated with HUA combined with DOX decreased significantly, and lipid reactive oxygen species (ROS) increased significantly. Afterward, we demonstrated that HUA can promote oxidative stress in DOX, characterized by increased mitochondrial ROS, and downregulate protein levels of glutathione peroxidase 4 (GPX4). N-acetyl-l-cysteine, an antioxidant, inhibits the process by which HUA promotes DOX-induced ferroptosis by increasing the GPX4 expression. Innovation: We verified that HUA can exacerbate myocardial damage. This has clinical implications for the treatment of cardiac damage in patients with hyperuricemia. Conclusions: Our data suggested that HUA promotes the cardiomyopathy. HUA promotes DOX-induced ferroptosis by increasing oxidative stress and downregulating GPX4. Antioxid. Redox Signal. 00, 00-00.
期刊介绍:
Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas.
ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes.
ARS coverage includes:
-ROS/RNS as messengers
-Gaseous signal transducers
-Hypoxia and tissue oxygenation
-microRNA
-Prokaryotic systems
-Lessons from plant biology