设计一种多功能酵母平台,利用葡萄糖或甲醇生产倍半萜。

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Linhui Gao, Kun Zhang, Yiwei Shen, Peng Cai, Yongjin J. Zhou
{"title":"设计一种多功能酵母平台,利用葡萄糖或甲醇生产倍半萜。","authors":"Linhui Gao,&nbsp;Kun Zhang,&nbsp;Yiwei Shen,&nbsp;Peng Cai,&nbsp;Yongjin J. Zhou","doi":"10.1002/biot.202400261","DOIUrl":null,"url":null,"abstract":"<p>Natural sesquiterpene are valuable compounds with diverse applications in industries, such as cosmetics and energy. Microbial synthesis offers a promising way for sesquiterpene production. Methanol, can be synthesized from CO<sub>2</sub> and solar energy, serves as a sustainable carbon source. However, it is still a challenge to utilize methanol for the synthesis of value-added compounds. <i>Pichia pastoris</i> (syn. <i>Komagataella phaffii</i>), known for its efficient utilization of glucose and methanol, has been widely used in protein synthesis. With advancements in technology, <i>P. pastoris</i> is gradually engineered for chemicals production. Here, we successfully achieved the synthesis of α-bisabolene in <i>P. pastoris</i> with dual carbon sources by expressing the α-bisabolene synthase gene under constitutive promoters. We systematically analyzed the effects of different steps in the mevalonate (MVA) pathway when methanol or glucose was used as the carbon source. Our finding revealed that the sesquiterpene synthase module significantly increased the production when methanol was used. While the metabolic modules <i>MK</i> and <i>PMK</i> greatly improved carbon source utilization, cell growth, and titer when glucose was used. Additionally, we demonstrated the synthesis of β-farnesene from dual carbon source by replacing the α-bisabolene synthase with a β-farnesene synthase. This study establishes a platform strain that is capable to synthesize sesquiterpene from different carbon sources in <i>P. pastoris</i>. Moreover, it paves the way for the development of <i>P. pastoris</i> as a high-efficiency microbial cell factory for producing various chemicals, and lays foundation for large-scale synthesis of high value-added chemicals efficiently from methanol in <i>P. pastoris</i>.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering a versatile yeast platform for sesquiterpene production from glucose or methanol\",\"authors\":\"Linhui Gao,&nbsp;Kun Zhang,&nbsp;Yiwei Shen,&nbsp;Peng Cai,&nbsp;Yongjin J. Zhou\",\"doi\":\"10.1002/biot.202400261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Natural sesquiterpene are valuable compounds with diverse applications in industries, such as cosmetics and energy. Microbial synthesis offers a promising way for sesquiterpene production. Methanol, can be synthesized from CO<sub>2</sub> and solar energy, serves as a sustainable carbon source. However, it is still a challenge to utilize methanol for the synthesis of value-added compounds. <i>Pichia pastoris</i> (syn. <i>Komagataella phaffii</i>), known for its efficient utilization of glucose and methanol, has been widely used in protein synthesis. With advancements in technology, <i>P. pastoris</i> is gradually engineered for chemicals production. Here, we successfully achieved the synthesis of α-bisabolene in <i>P. pastoris</i> with dual carbon sources by expressing the α-bisabolene synthase gene under constitutive promoters. We systematically analyzed the effects of different steps in the mevalonate (MVA) pathway when methanol or glucose was used as the carbon source. Our finding revealed that the sesquiterpene synthase module significantly increased the production when methanol was used. While the metabolic modules <i>MK</i> and <i>PMK</i> greatly improved carbon source utilization, cell growth, and titer when glucose was used. Additionally, we demonstrated the synthesis of β-farnesene from dual carbon source by replacing the α-bisabolene synthase with a β-farnesene synthase. This study establishes a platform strain that is capable to synthesize sesquiterpene from different carbon sources in <i>P. pastoris</i>. Moreover, it paves the way for the development of <i>P. pastoris</i> as a high-efficiency microbial cell factory for producing various chemicals, and lays foundation for large-scale synthesis of high value-added chemicals efficiently from methanol in <i>P. pastoris</i>.</p>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"19 8\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400261\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400261","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

天然倍半萜是一种有价值的化合物,在化妆品和能源等行业有着广泛的应用。微生物合成为倍半萜的生产提供了一种前景广阔的途径。甲醇可由二氧化碳和太阳能合成,是一种可持续的碳源。然而,利用甲醇合成高附加值化合物仍是一项挑战。以高效利用葡萄糖和甲醇而闻名的 Pichia pastoris(同属 Komagataella phaffii)已被广泛用于蛋白质合成。随着技术的进步,P. pastoris 逐渐被用于化学品的生产。在此,我们通过在组成型启动子下表达α-二羟基苯合成酶基因,成功地在双碳源条件下实现了α-二羟基苯的合成。我们系统分析了甲醇或葡萄糖作为碳源时,甲羟戊酸(MVA)途径中不同步骤的影响。我们的研究结果表明,当使用甲醇时,倍半萜合成酶模块能显著提高产量。而当使用葡萄糖时,代谢模块 MK 和 PMK 则大大提高了碳源利用率、细胞生长和滴度。此外,我们还证明了用β-法呢烯合成酶取代α-双大麻烯合成酶,从双碳源合成β-法呢烯。这项研究建立了一个平台菌株,该菌株能够从不同的碳源中合成倍半萜。此外,该研究还为将牧杆菌发展成为生产各种化学品的高效微生物细胞工厂铺平了道路,并为牧杆菌以甲醇为原料大规模高效合成高附加值化学品奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering a versatile yeast platform for sesquiterpene production from glucose or methanol

Natural sesquiterpene are valuable compounds with diverse applications in industries, such as cosmetics and energy. Microbial synthesis offers a promising way for sesquiterpene production. Methanol, can be synthesized from CO2 and solar energy, serves as a sustainable carbon source. However, it is still a challenge to utilize methanol for the synthesis of value-added compounds. Pichia pastoris (syn. Komagataella phaffii), known for its efficient utilization of glucose and methanol, has been widely used in protein synthesis. With advancements in technology, P. pastoris is gradually engineered for chemicals production. Here, we successfully achieved the synthesis of α-bisabolene in P. pastoris with dual carbon sources by expressing the α-bisabolene synthase gene under constitutive promoters. We systematically analyzed the effects of different steps in the mevalonate (MVA) pathway when methanol or glucose was used as the carbon source. Our finding revealed that the sesquiterpene synthase module significantly increased the production when methanol was used. While the metabolic modules MK and PMK greatly improved carbon source utilization, cell growth, and titer when glucose was used. Additionally, we demonstrated the synthesis of β-farnesene from dual carbon source by replacing the α-bisabolene synthase with a β-farnesene synthase. This study establishes a platform strain that is capable to synthesize sesquiterpene from different carbon sources in P. pastoris. Moreover, it paves the way for the development of P. pastoris as a high-efficiency microbial cell factory for producing various chemicals, and lays foundation for large-scale synthesis of high value-added chemicals efficiently from methanol in P. pastoris.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信