Mateus Martin, Horacio Hideki Yanasse, Maristela O. Santos, Reinaldo Morabito
{"title":"具有客户订单分布的二维料仓包装问题模型","authors":"Mateus Martin, Horacio Hideki Yanasse, Maristela O. Santos, Reinaldo Morabito","doi":"10.1007/s10878-024-01201-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we address an extension of the classical two-dimensional bin packing (2BPP) that considers the spread of customer orders (2BPP-OS). The 2BPP-OS addresses a set of rectangular items, required from different customer orders, to be cut from a set of rectangular bins. All the items of a customer order are dispatched together to the next stage of production or distribution after its completion. The objective is to minimize the number of bins used and the spread of customer orders over the cutting process. The 2BPP-OS gains relevance in manufacturing environments that seek minimum waste solutions with satisfactory levels of customer service. We propose integer linear programming (ILP) models for variants of the 2BPP-OS that consider non-guillotine, 2-stage, restricted 3-stage, and unrestricted 3-stage patterns. We are not aware of integrated approaches for the 2BPP-OS in the literature despite its relevance in practical settings. Using a general-purpose ILP solver, the results show that the 2BPP-OS takes more computational effort to solve than the 2BPP, as it has to consider several symmetries that are often disregarded by the traditional 2BPP approaches. The solutions obtained by the proposed approaches have similar bin usage and significantly better metrics of customer satisfaction concerning the approaches that neglect the customer order spread.\n</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"52 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Models for two-dimensional bin packing problems with customer order spread\",\"authors\":\"Mateus Martin, Horacio Hideki Yanasse, Maristela O. Santos, Reinaldo Morabito\",\"doi\":\"10.1007/s10878-024-01201-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we address an extension of the classical two-dimensional bin packing (2BPP) that considers the spread of customer orders (2BPP-OS). The 2BPP-OS addresses a set of rectangular items, required from different customer orders, to be cut from a set of rectangular bins. All the items of a customer order are dispatched together to the next stage of production or distribution after its completion. The objective is to minimize the number of bins used and the spread of customer orders over the cutting process. The 2BPP-OS gains relevance in manufacturing environments that seek minimum waste solutions with satisfactory levels of customer service. We propose integer linear programming (ILP) models for variants of the 2BPP-OS that consider non-guillotine, 2-stage, restricted 3-stage, and unrestricted 3-stage patterns. We are not aware of integrated approaches for the 2BPP-OS in the literature despite its relevance in practical settings. Using a general-purpose ILP solver, the results show that the 2BPP-OS takes more computational effort to solve than the 2BPP, as it has to consider several symmetries that are often disregarded by the traditional 2BPP approaches. The solutions obtained by the proposed approaches have similar bin usage and significantly better metrics of customer satisfaction concerning the approaches that neglect the customer order spread.\\n</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-024-01201-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01201-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Models for two-dimensional bin packing problems with customer order spread
In this paper, we address an extension of the classical two-dimensional bin packing (2BPP) that considers the spread of customer orders (2BPP-OS). The 2BPP-OS addresses a set of rectangular items, required from different customer orders, to be cut from a set of rectangular bins. All the items of a customer order are dispatched together to the next stage of production or distribution after its completion. The objective is to minimize the number of bins used and the spread of customer orders over the cutting process. The 2BPP-OS gains relevance in manufacturing environments that seek minimum waste solutions with satisfactory levels of customer service. We propose integer linear programming (ILP) models for variants of the 2BPP-OS that consider non-guillotine, 2-stage, restricted 3-stage, and unrestricted 3-stage patterns. We are not aware of integrated approaches for the 2BPP-OS in the literature despite its relevance in practical settings. Using a general-purpose ILP solver, the results show that the 2BPP-OS takes more computational effort to solve than the 2BPP, as it has to consider several symmetries that are often disregarded by the traditional 2BPP approaches. The solutions obtained by the proposed approaches have similar bin usage and significantly better metrics of customer satisfaction concerning the approaches that neglect the customer order spread.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.