Yikun Zhang;Dianlin Hu;Wangyao Li;Weijie Zhang;Gaoyu Chen;Ronald C. Chen;Yang Chen;Hao Gao
{"title":"2V-CBCT:使用真实投影数据进行基于双正交投影的 CBCT 重建和放射治疗剂量计算。","authors":"Yikun Zhang;Dianlin Hu;Wangyao Li;Weijie Zhang;Gaoyu Chen;Ronald C. Chen;Yang Chen;Hao Gao","doi":"10.1109/TMI.2024.3439573","DOIUrl":null,"url":null,"abstract":"This work demonstrates the feasibility of two-orthogonal-projection-based CBCT (2V-CBCT) reconstruction and dose calculation for radiation therapy (RT) using real projection data, which is the first 2V-CBCT feasibility study with real projection data, to the best of our knowledge. RT treatments are often delivered in multiple fractions, for which on-board CBCT is desirable to calculate the delivered dose per fraction for the purpose of RT delivery quality assurance and adaptive RT. However, not all RT treatments/fractions have CBCT acquired, but two orthogonal projections are always available. The question to be addressed in this work is the feasibility of 2V-CBCT for the purpose of RT dose calculation. 2V-CBCT is a severely ill-posed inverse problem for which we propose a coarse-to-fine learning strategy. First, a 3D deep neural network that can extract and exploit the inter-slice and intra-slice information is adopted to predict the initial 3D volumes. Then, a 2D deep neural network is utilized to fine-tune the initial 3D volumes slice-by-slice. During the fine-tuning stage, a perceptual loss based on multi-frequency features is employed to enhance the image reconstruction. Dose calculation results from both photon and proton RT demonstrate that 2V-CBCT provides comparable accuracy with full-view CBCT based on real projection data.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 1","pages":"284-296"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2V-CBCT: Two-Orthogonal-Projection Based CBCT Reconstruction and Dose Calculation for Radiation Therapy Using Real Projection Data\",\"authors\":\"Yikun Zhang;Dianlin Hu;Wangyao Li;Weijie Zhang;Gaoyu Chen;Ronald C. Chen;Yang Chen;Hao Gao\",\"doi\":\"10.1109/TMI.2024.3439573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work demonstrates the feasibility of two-orthogonal-projection-based CBCT (2V-CBCT) reconstruction and dose calculation for radiation therapy (RT) using real projection data, which is the first 2V-CBCT feasibility study with real projection data, to the best of our knowledge. RT treatments are often delivered in multiple fractions, for which on-board CBCT is desirable to calculate the delivered dose per fraction for the purpose of RT delivery quality assurance and adaptive RT. However, not all RT treatments/fractions have CBCT acquired, but two orthogonal projections are always available. The question to be addressed in this work is the feasibility of 2V-CBCT for the purpose of RT dose calculation. 2V-CBCT is a severely ill-posed inverse problem for which we propose a coarse-to-fine learning strategy. First, a 3D deep neural network that can extract and exploit the inter-slice and intra-slice information is adopted to predict the initial 3D volumes. Then, a 2D deep neural network is utilized to fine-tune the initial 3D volumes slice-by-slice. During the fine-tuning stage, a perceptual loss based on multi-frequency features is employed to enhance the image reconstruction. Dose calculation results from both photon and proton RT demonstrate that 2V-CBCT provides comparable accuracy with full-view CBCT based on real projection data.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 1\",\"pages\":\"284-296\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10623741/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10623741/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
2V-CBCT: Two-Orthogonal-Projection Based CBCT Reconstruction and Dose Calculation for Radiation Therapy Using Real Projection Data
This work demonstrates the feasibility of two-orthogonal-projection-based CBCT (2V-CBCT) reconstruction and dose calculation for radiation therapy (RT) using real projection data, which is the first 2V-CBCT feasibility study with real projection data, to the best of our knowledge. RT treatments are often delivered in multiple fractions, for which on-board CBCT is desirable to calculate the delivered dose per fraction for the purpose of RT delivery quality assurance and adaptive RT. However, not all RT treatments/fractions have CBCT acquired, but two orthogonal projections are always available. The question to be addressed in this work is the feasibility of 2V-CBCT for the purpose of RT dose calculation. 2V-CBCT is a severely ill-posed inverse problem for which we propose a coarse-to-fine learning strategy. First, a 3D deep neural network that can extract and exploit the inter-slice and intra-slice information is adopted to predict the initial 3D volumes. Then, a 2D deep neural network is utilized to fine-tune the initial 3D volumes slice-by-slice. During the fine-tuning stage, a perceptual loss based on multi-frequency features is employed to enhance the image reconstruction. Dose calculation results from both photon and proton RT demonstrate that 2V-CBCT provides comparable accuracy with full-view CBCT based on real projection data.